MrGandalf
- 30
- 0
I'm going to prove that if f and g are continuous functions, then so is fg.
We define fg \; :\; E \rightarrow \bb{F} by
(fg)(t) \;=\; f(t)g(t) for all t \in E
(F is an ordered field and E is a subset of F).
Proof
|(fg)(x) - (fg)(a)| = |f(x)g(x) - f(a)g(a)| =
Add and subtract f(x)g(a)
|f(x)g(x) - f(x)g(a) \;+\; f(x)g(a) - f(a)g(a)| \leq
We use the triangle inequality
\leq |f(x)g(x) - f(x)g(a)| \;+\; |f(x)g(a) - f(a)g(a)| =
We factor out f(x) and g(a)
|f(x)||g(x) - g(a)| \;+\; |g(a)||f(x) - f(a)|
From the definition pf continuity we have
\delta_1 such that |f(x) - f(a)| < \frac{\epsilon}{2} for |x-a|
\delta_2 such that |g(x) - g(a)| < \frac{\epsilon}{2} for |x-a|
But we still have |f(x)| and |g(a)|.
From the definition, we can deduce [*] - This part I'm not really sure about.
|f(x) - f(a)| < \frac{\epsilon}{2} \;\Rightarrow\; |f(x)| < \frac{\epsilon}{2} + |f(a)|
|g(x) - g(a)| < \frac{\epsilon}{2} \;\Rightarrow\; |g(a)| < \frac{\epsilon}{2} + |g(x)|
And we can choose new delta-values:
\delta_3 such that |f(x) - f(a)| \;<\; \frac{\epsilon}{2(\frac{\epsilon}{2}+ |f(a)|)} for |x-a|
\delta_4 such that |g(x) - g(a)| \;<\; \frac{\epsilon}{2(\frac{\epsilon}{2}+ |g(x)|)} for |x-a|
In conclusion, we take \delta_5 = \min(\delta_3, \delta_4)
And get:
|f(x)||g(x) - g(a)| \;+\; |g(a)||f(x) - f(a)| <
(\frac{\epsilon}{2} + |f(a)|\cdot \frac{\epsilon}{2(\frac{\epsilon}{2}\cdot |f(a)|)}) + (\frac{\epsilon}{2} + |g(x)|\cdot \frac{\epsilon}{2(\frac{\epsilon}{2}\cdot |g(x)|)}) = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon
And the proof is concluded. Quad Erad Demonstrandum... if it is right, of course.
Hope it wasn't too long!
We define fg \; :\; E \rightarrow \bb{F} by
(fg)(t) \;=\; f(t)g(t) for all t \in E
(F is an ordered field and E is a subset of F).
Proof
|(fg)(x) - (fg)(a)| = |f(x)g(x) - f(a)g(a)| =
Add and subtract f(x)g(a)
|f(x)g(x) - f(x)g(a) \;+\; f(x)g(a) - f(a)g(a)| \leq
We use the triangle inequality
\leq |f(x)g(x) - f(x)g(a)| \;+\; |f(x)g(a) - f(a)g(a)| =
We factor out f(x) and g(a)
|f(x)||g(x) - g(a)| \;+\; |g(a)||f(x) - f(a)|
From the definition pf continuity we have
\delta_1 such that |f(x) - f(a)| < \frac{\epsilon}{2} for |x-a|
\delta_2 such that |g(x) - g(a)| < \frac{\epsilon}{2} for |x-a|
But we still have |f(x)| and |g(a)|.
From the definition, we can deduce [*] - This part I'm not really sure about.
|f(x) - f(a)| < \frac{\epsilon}{2} \;\Rightarrow\; |f(x)| < \frac{\epsilon}{2} + |f(a)|
|g(x) - g(a)| < \frac{\epsilon}{2} \;\Rightarrow\; |g(a)| < \frac{\epsilon}{2} + |g(x)|
And we can choose new delta-values:
\delta_3 such that |f(x) - f(a)| \;<\; \frac{\epsilon}{2(\frac{\epsilon}{2}+ |f(a)|)} for |x-a|
\delta_4 such that |g(x) - g(a)| \;<\; \frac{\epsilon}{2(\frac{\epsilon}{2}+ |g(x)|)} for |x-a|
In conclusion, we take \delta_5 = \min(\delta_3, \delta_4)
And get:
|f(x)||g(x) - g(a)| \;+\; |g(a)||f(x) - f(a)| <
(\frac{\epsilon}{2} + |f(a)|\cdot \frac{\epsilon}{2(\frac{\epsilon}{2}\cdot |f(a)|)}) + (\frac{\epsilon}{2} + |g(x)|\cdot \frac{\epsilon}{2(\frac{\epsilon}{2}\cdot |g(x)|)}) = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon
And the proof is concluded. Quad Erad Demonstrandum... if it is right, of course.
Hope it wasn't too long!
Last edited: