Gooolati
- 21
- 0
Homework Statement
Prove:
f(x,y) = \frac{x(x^{2}-y^{2}}{(x^{2}+y^{2}} if (x,y) \neq (0,0)
0 if (x,y) = (0,0)
is continuous at the origin
Homework Equations
\forall \epsilon > 0 \exists \delta > 0 s.t. if |(x,y)| < \delta then |f(x,y)| < \epsilon
(Since we are proving continuity at the origin)
The Attempt at a Solution
|(x,y)| < \delta \Leftrightarrow x^{2} + y^{2} < \delta^{2}
then this means that |x^{2} - y^{2}| < \delta^{2}
so:
f(x,y) < \frac{x}{x^{2}+y^{2}}(\delta^{2})
and I feel like I'm close but then I'm stuck! All help appreciated thanks !