# Equation of an oscillating system without any starting values

## Homework Statement

A mass m1 is located on a platform with mass M. The platfrom is located on springs with total constant k such that it can swing vertically in direction x.

a) Write down the equations of motion assuming mass m1 will always be connected to the platform. Write it as x(t)

b) What's the maximum force on the spring?

c) What's the maximum normal force between m1 and M?

d) What's the Amplitude so that m1 will takeoff from the platform

Thanks in advance

## Homework Equations

$$m*\frac{d^2x}{dt^2} = -kx$$

## The Attempt at a Solution

a)
I have no information given, so I assume I can't use sin() or cos() or am I overthinking it?
Let m = m1+M
So we have $$m*\frac{d^2x}{dt^2} = -kx$$
And I use the Cauchy–Euler equation $$m*\lambda^2*e^{{\lambda}*t} + k*e^{{\lambda}*t}=0$$
Which leads to: $$\lambda_{1,2} = +-\sqrt{\frac{-k}{m}}$$
Here I have a minus inside the root. I think since no direction is given I can say that I only care about the absolute value

So I have $$A*e^{\sqrt{k/m}*t}+B*e^{-\sqrt{k/m}*t}$$
There is nothing more that I can do about the constants, because there is nothing given.

For b) and c) I know it has to be on the bottom dead center. d) The acceleration of the mass on the spring has to be greater than gravity
How do I continue from here? My ideas would be to solve it for ##\sqrt{k/m}## or use ##E_{pot} + E_{kin}## but it seems I'm totally off track.

## Answers and Replies

Mister T
Science Advisor
Gold Member
What about the force ##mg##?

What about the force ##mg##?
Do I have to add it directly in the "relevant equation" and then treat it like inhomogeneous differential equation 2nd order? or add just afterwards?

haruspex
Science Advisor
Homework Helper
Gold Member
2020 Award
Do I have to add it directly in the "relevant equation" and then treat it like inhomogeneous differential equation 2nd order? or add just afterwards?
It depends how you are defining x. Usualy in a vertical spring oscillation one takes x as displacement from equilibrium. This means you are only concerned with the additional spring force over and above that required to oppose g. Thus, your equation is correct.

haruspex
Science Advisor
Homework Helper
Gold Member
2020 Award
since no direction is given I can say that I only care about the absolute value
No, the sign matters. Your lambda becomes imaginary, giving terms like e±iωt. You should recognise what that means.
The usual solution avoids this by going straight to the well known solution to ##\ddot x+kx=0##. This is SHM - what form of equation would you expect?

No, the sign matters. Your lambda becomes imaginary, giving terms like e±iωt. You should recognise what that means.
The usual solution avoids this by going straight to the well known solution to ##\ddot x+kx=0##. This is SHM - what form of equation would you expect?
The Task says I have to give it as a function x(t). I can solve a to the point where x(t) = ##x_0*cos(wt) + \frac{v_0}{w}*sin(wt)## but how can I use this to solve b,c and d? We can also take Acos()

Last edited:
For b)
Can I say ##mgx = \frac{1}{2}kx^2## solve it for x and insert it in ##F = -kx## which will give me ##F=2g##

haruspex
Science Advisor
Homework Helper
Gold Member
2020 Award
The Task says I have to give it as a function x(t). I can solve a to the point where x(t) = ##x_0*cos(wt) + \frac{v_0}{w}*sin(wt)## but how can I use this to solve b,c and d? We can also take Acos()
If you have quoted the whole question as given to you, there is not enough information. The best you can do is express the answers in terms of the unknowns you have introduced.

If you have quoted the whole question as given to you, there is not enough information. The best you can do is express the answers in terms of the unknowns you have introduced.
so for a) the answer is simply ##(m+M)x'' = -kx_{max}##?

haruspex
Science Advisor
Homework Helper
Gold Member
2020 Award
so for a) the answer is simply ##(m+M)x'' = -kx_{max}##?
No, xmax is a constant surely?

No, xmax is a constant surely?
I'm sorry. I'm talking about b)

haruspex
Science Advisor
Homework Helper
Gold Member
2020 Award
I'm sorry. I'm talking about b)
Ok, but express it in terms of the unknowns you introduced in post #6.

Ok, but express it in terms of the unknowns you introduced in post #6.
Do you mean ##(m+M)x'' = -k*[x_0*cos(wt)+\frac{v_0}{w}*sin(wt) ##

haruspex
Science Advisor
Homework Helper
Gold Member
2020 Award
Do you mean ##(m+M)x'' = -k*[x_0*cos(wt)+\frac{v_0}{w}*sin(wt) ##
No, that is the force at time t. I mean express xmax in terms of x0, v0 and ω.

No, that is the force at time t. I mean express xmax in terms of x0, v0 and ω.
The derivative of that function has to be 0 but that's hard to do with that function. I don't see any approach

haruspex
Science Advisor
Homework Helper
Gold Member
2020 Award
The derivative of that function has to be 0 but that's hard to do with that function. I don't see any approach
Energy?

Energy?
##mgx=1/2*kx^2## putting my function x(t) in will still leave me with cos sin stuff

haruspex
Science Advisor
Homework Helper
Gold Member
2020 Award
##mgx=1/2*kx^2## putting my function x(t) in will still leave me with cos sin stuff
I thought we agreed g becomes irrelevant by choice of x=0 at equilibrium?
In terms of your unknowns in post #6, what is the initial energy (excluding GPE)?

I thought we agreed g becomes irrelevant by choice of x=0 at equilibrium?
In terms of your unknowns in post #6, what is the initial energy (excluding GPE)?
the initial energy would be ##x_0## and ##v_0##

haruspex
Science Advisor
Homework Helper
Gold Member
2020 Award
the initial energy would be ##x_0## and ##v_0##
It would be determined by those, yes, but what is the algebraic expression?
What about when the spring force is maximised?

It would be determined by those, yes, but what is the algebraic expression?
What about when the spring force is maximised?
Sorry I don't see it

haruspex
Science Advisor
Homework Helper
Gold Member
2020 Award
Sorry I don't see it
This what I had in mind:
In terms of x and v, what is the expression for total mechanical energy (remember, we have neutralised GPE) at any time t?
In terms of the unknowns you introduced in post #6, what is its value at t=0?
In terms of x and v, what is its value when the spring force is at maximum?

However, it was only a suggested approach and I have not checked that it helps. If you prefer, you can wait until I have had a chance to try it myself.

Edit: see next post

Last edited:
haruspex
Science Advisor
Homework Helper
Gold Member
2020 Award
it turns out that using energy leads to the same place, but that place is not as bad as you made out. You just need to use sec2=1+tan2.
Please post your attempt at (b) as far as you can get.

it turns out that using energy leads to the same place, but that place is not as bad as you made out. You just need to use sec2=1+tan2.
Please post your attempt at (b) as far as you can get.
I guess you want me to use one of those magic identities. The only one I know is ##a*sin(x) + b*cos(x) = sqrt(a^2 + b^2)*sin(x + t)## so I have ##\sqrt{(x_0)^2+(\frac{v_0}{w})^2}##

So I can read out the Amplitude

For C)

It leads me to ## \frac{F}{m+M} = \sqrt{(x_0)^2+(\frac{v_0}{w})^2}k##
Does this look reasonable?

haruspex
Science Advisor
Homework Helper
Gold Member
2020 Award
It leads me to ## \frac{F}{m+M} = \sqrt{(x_0)^2+(\frac{v_0}{w})^2}k##
Does this look reasonable?
Close, but you have a dimensional inconsistency (always something worth checking!)
The LHS is an acceleration but the right is a force.