Equation of Motion for 2 DOF spring damper system

AI Thread Summary
The discussion focuses on deriving the differential equations of motion for a two-degree-of-freedom (DOF) spring-damper system. The equations provided include mx'' + c1x' + k1x = 0 and my'' + c2y' + k2y = 0, which describe the motion without external forces. Gravity is not considered in this analysis, and the system is examined under the influence of a uniformly rotating frame. The transformation of coordinates due to rotation is addressed, with new positions defined as Xnew and Ynew, leading to differentiated motion equations. The discussion emphasizes the need to eliminate certain terms in the equations to simplify the analysis in the rotating frame.
ufone317
Messages
2
Reaction score
0
Please guide me towards the "differential equation of motion" for the following 2 DOF Spring-damper system.

Image.jpg


And furthermore, if above system is in a uniform speed rotating frame, then what can be the effect on this system?


Thank you very much.
 
Physics news on Phys.org
Please write the equation for one dof.

Does gravity g apply to y-direction?


What force must be considered in a rotating body?
 
Thank you for your reply.

m*(d2x/dt2)+c*(dx/dt)+k*x = 0 is the equation for one axis.

No effect of gravity is considered here.

The whole frame is rotating at an uniform angular velocity.

If you can provide equation for static (i-e. not rotating) case, that's also fine.
 
Correct me if I'm wrong.

Here are the motion equations;

mx'' + c1x' + k1x' = 0 (Not forced)
my'' + c2y' + k2y' = 0 (Not forced)

Suppose the frame is rotated thru angle q,

In this case, the mass center position with respect to the frame F is

Xnew = x*cos(q) - y*sin(q)
Ynew = y*cos(q) + x*sin(q)

You can simply differentiate Xnew and Ynew. Once and twice, then replace in motion equations

Xnew' = cos(q)*(x'-yq*') - sin(q)*(y'+xq*')
Xnew'' = x''*cos(q) - 2*x'*q'*sin(q) - x*q''*sin(q) - x*q'*q'*cos(q)
-y''*sin(q) - 2*y'*q'*cos(q) - y*q''*cos(q) + y*q'*q'*sin(q)

Note that q''=0. Eliminate some of the terms above and do the same thing for y-axis
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top