Equipotential Surfaces: Calculating Work Required to Move a Charge

AI Thread Summary
The discussion focuses on calculating the work required to move a charge from point E to F across equipotential surfaces. The user correctly identifies the potential difference as -80V and calculates the work done as 2.72 x 10^-4 J. Clarification is provided that the work is done by the user, not the electric field, which would be positive. It is emphasized that the work done by the user is negative because it opposes the electric field's force. The importance of understanding the direction of forces and potential in determining work is highlighted.
daimoku
Messages
19
Reaction score
0
[SOLVED] Equipotential surfaces

Homework Statement


http://personalpages.tds.net/~locowise/test/equipot1.jpg
Fig. 1 -- Some equipotential surfaces

In the figure above, you see a set of equipotentials representing an electric field in the region and some labeled points (A..G).

What is the work required by you to move a 3.4 x 10^-6 C charge from E to F?

We know k=8.99*10^9 N*m^2/C^2

Homework Equations


r = kq/v
Work = force * displacement
V2-V1=-Welec/q


The Attempt at a Solution



Calculated Re to be 196.81m and Rf to be 305.66m. <---not sure if this is necessary
Vf-Ve=-80V

-80V=-Welec/(3.4*10^-6C)
Welec comes out to be 2.72*10-4 J

Could someone point out where I made a mistake or even if I used the correct method? Many thanks for your help!
 
Last edited by a moderator:
Physics news on Phys.org
daimoku said:
Calculated Re to be 196.81m and Rf to be 305.66m. <---not sure if this is necessary
What is this? Looks like you are trying to find the radii of the two equipotential surfaces. Do they look spherical?
Vf-Ve=-80V

-80V=-Welec/(3.4*10^-6C)
Welec comes out to be 2.72*10-4 J

Could someone point out where I made a mistake or even if I used the correct method? Many thanks for your help!

The answer looks correct, except that it should have negative sign, since the work is being done by the charge.
 
Thanks alot! You were correct-o-mundo on the negative sign!
 


The question is the work done BY ME, and NOT by the electric field. The work done by the electric field is positive as the force and displacement are in the same direction (since the charge moves from a point of higher to lower potential). Since the work is done by moving the charge without acceleration, the force given by me on the charge has to be equal and opposite to the force of the electric field on the charge. Hence the work done by me is negative.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top