Proving Equivalence and Function Equality in Real Analysis

AI Thread Summary
The discussion revolves around a problem in Real Analysis involving functions and equivalence relations. The user seeks assistance with proving that f(x) equals h(g(x)), having already solved the first three parts of the problem. They clarify that E represents the set of equivalence classes for the function, emphasizing the requirement for functions to produce the same output for equal inputs. The user is confused about how to proceed with the proof, particularly in establishing the equality of the functions. The conversation highlights the complexities of function equality within the context of equivalence relations in Real Analysis.
SomeRandomGuy
Messages
55
Reaction score
0
Hey guys, wasn't sure what forum to post this in. So if this is the wrong forum, I apologize. Anyway, I have a problem in Real Analysis that I can't quite get. Here it is:

Let f:A->B and R is a relation on A such that xRy iff f(x) = f(y).
a.) Prove R is an equivalence relation
b.) Show g:A->E is surjective
c.) Show h:E->B is injective
d.) Prove f(x) = h(g(x)).

I solved parts a, b, and c. My problem is part d... I don't even know where to begin. It just doesn't make sense to me when I think about it. Thanks for any help.

EDIT: I just realized I didn't put what E is. E is the equivalence classes on any particular element. So, it's the set of all equivalence classes for this function.
 
Last edited:
Physics news on Phys.org
For two functions to be equal, they have to send the same element to the same image.
 
Galileo said:
For two functions to be equal, they have to send the same element to the same image.

So are we showing that if f(x) = h(g(x)), then g(x) = x? Here is exactly what I have written so far:

"Proof: In order to show that two functions are equal, we must show that for any x in the domain, we will get the same output y in the codomain. So, if f(x) = x, then h(g(x)) = x as well. By the definition if being injective, x = g(x)."

I'm lost from there.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top