Proving R is an Equivalence Relation on R^2

jaejoon89
Messages
187
Reaction score
0
A relation R on R^2 is defined by (x_{1},y_{1})\mathit{R}(x_{2},y_{2})\;\;\;if\;\;\;x_{1}^{2}+y_{1}^{2}=x_{2}^{2}+y_{2}^{2}

How do you show that R is an equivalance relation?
 
Last edited:
Physics news on Phys.org
What is the definition of an equivalence relation? (I.e. what properties do equivalence relations have over normal relations?)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top