Equivalent Norms: Proving $\|A\| \leq \|A\|_{Eucl} \leq \sqrt{n}\|A\|$

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Equivalent
Click For Summary
SUMMARY

The discussion focuses on proving the inequalities $\|A\| \leq \|A\|_{\text{Eucl}} \leq \sqrt{n}\|A\|$ for a real matrix $A=(a_{i,j})$ with $m$ rows and $n$ columns. The first inequality is established using the Cauchy–Schwarz inequality, demonstrating that $\|Ax\|_2 \leq \|A\|_{\text{Eucl}} \|x\|_2$. For the second inequality, participants suggest using the relationship $\|A\|_{\text{Eucl}}^2 = \text{tr}(A^TA)$ and properties of the supremum to derive the conclusion. The discussion emphasizes the importance of understanding matrix norms and their relationships.

PREREQUISITES
  • Understanding of matrix norms, specifically operator norm and Euclidean norm.
  • Familiarity with the Cauchy–Schwarz inequality in the context of linear algebra.
  • Knowledge of matrix transpose and trace operations.
  • Basic concepts of supremum and continuity in mathematical analysis.
NEXT STEPS
  • Study the properties of matrix norms, focusing on operator norm and Euclidean norm.
  • Learn about the Cauchy–Schwarz inequality and its applications in linear algebra.
  • Explore the concept of matrix trace and its significance in matrix analysis.
  • Investigate the relationship between different matrix norms and their implications in various mathematical contexts.
USEFUL FOR

Mathematicians, students studying linear algebra, and anyone interested in understanding the relationships between different matrix norms and their applications in theoretical and applied mathematics.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $A=(a_{i,j})$ a real matrix with $m$ rows and $n$ columns, $x\in \mathbb{R}^n$ and \begin{equation*}\|A\|:=\sup_{\|x\|_2\leq 1}\|Ax\|_2, \ \ \|A\|_{\text{Eucl}}:=\sqrt{\sum_{i=1}^m\sum_{j=1}^n|a_{i,j}|^2}\end{equation*}

I want to show that $$\|A\|\leq \|A\|_{\text{Eucl}} \leq \sqrt{n}\|A\|$$ I have already shown the first inequality:

Since $\displaystyle{(Ax)_i=\sum_{j=1}^na_{i,j}x_j}$, we get $\displaystyle{\|Ax\|_2^2=\sum_{i=1}^m\left (\sum_{j=1}^n|a_{i,j}x_j|\right )^2=\sum_{i=1}^m\left (\sum_{j=1}^n|a_{i,j}||x_j|\right )^2}$.

From the Cauchy–Schwarz inequality we get \begin{equation*}\left (\sum_{j=1}^n|a_{i,j}||x_j|\right )^2\leq \left (\sum_{j=1}^n{|a_{i,j}|^2}\right )\left (\sum_{j=1}^n|x_j|^2\right )=\left (\sum_{j=1}^n{|a_{i,j}|^2}\right )\|x\|_2^2\end{equation*}

Sp we get\begin{equation*}\|Ax\|_2^2=\sum_{i=1}^n\left (\sum_{j=1}^n|a_{i,j}||x_j|\right )^2\leq \sum_{i=1}^m\sum_{j=1}^n|a_{i,j}|^2\|x\|_2^2=\|A\|_{\text{Eucl}}^2\,\|x\|_2^2 \end{equation*}

Therefore we have that \begin{equation*}\|Ax\|_2\leq \|A\|_{\text{Eucl}}\,\|x\|_2\Rightarrow \sup_{\|x\|_2\leq 1}\|Ax\|_2\leq \sup_{\|x\|_2\leq 1}\|A\|_{\text{Eucl}}\,\|x\|_2=\|A\|_{\text{Eucl}}\end{equation*}

From that it implies that $\|A\|\leq \|A\|_{\text{Eucl}}$. Is everything correct? (Wondering)
Could you give me a hint for the second inequality? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

Let $A=(a_{i,j})$ a real matrix with $m$ rows and $n$ columns, $x\in \mathbb{R}^n$ and \begin{equation*}\|A\|:=\sup_{\|x\|_2\leq 1}\|Ax\|_2, \ \ \|A\|_{\text{Eucl}}:=\sqrt{\sum_{i=1}^m\sum_{j=1}^n|a_{i,j}|^2}\end{equation*}

I want to show that $$\|A\|\leq \|A\|_{\text{Eucl}} \leq \sqrt{n}\|A\|$$ I have already shown the first inequality:
.
.
.
Is everything correct? (Wondering)
Yes!

mathmari said:
Could you give me a hint for the second inequality? (Wondering)
You could use the fact that $\|A\|_{\text{Eucl}}^2 = \text{tr}\,(A^TA)$ (where tr denotes the trace and $A^T$ is the transpose of $A$).
 
Opalg said:
You could use the fact that $\|A\|_{\text{Eucl}}^2 = \text{tr}\,(A^TA)$ (where tr denotes the trace and $A^T$ is the transpose of $A$).

What do we get from that? I got stuck right now. (Wondering) Could we do also something like the following?
\begin{align*}\|A\|_{\text{Eucl}}^2=\sum_{i=1}^m\sum_{j=1}^n|a_{i,j}|^2=\sum_{j=1}^n\sum_{i=1}^m|a_{i,j}|^2=\sum_{j=1}^n\|a_j\|_2^2=\sum_{j=1}^n\|Ae_j\|_2^2\leq \sum_{j=1}^n\|A\|_2^2\|e_j\|_2^2=n\|A\|_2^2\end{align*} But instead of $\|A\|$ we have $\|A\|_2$. Is the above correct? If yes, can we get to $\|A\|$ ? (Wondering)
 
Hi mathmari,

mathmari said:
Could we do also something like the following?
\begin{align*}\|A\|_{\text{Eucl}}^2=\sum_{i=1}^m\sum_{j=1}^n|a_{i,j}|^2=\sum_{j=1}^n\sum_{i=1}^m|a_{i,j}|^2=\sum_{j=1}^n\|a_j\|_2^2=\sum_{j=1}^n\|Ae_j\|_2^2\leq \sum_{j=1}^n\|A\|_2^2\|e_j\|_2^2=n\|A\|_2^2\end{align*} But instead of $\|A\|$ we have $\|A\|_2$. Is the above correct? If yes, can we get to $\|A\|$ ? (Wondering)

This idea will work, we just need to note two small things:

1) For a set $S$ of non-negative numbers -- which $S=\{\|Ax\|_{2} : \|x\|_{2}\leq 1\}$ is -- $\sup_{x\in S} x^{2}=\left(\sup_{x\in S} x\right)^{2}.$ This follows from the continuity and monotonicity of the squaring function $x\mapsto x^{2}$ on the non-negative half-line.

2) For each $e_{j}$, $\|Ae_{j}\|_{2}^{2}\leq \|A\|^{2}$, because, using point (1) above,
$$\|A\|^{2}=\left(\sup_{\|x\|_{2}\leq 1}\|Ax\|_{2} \right)^{2}=\sup_{\|x\|_{2}\leq 1}\|Ax\|^{2}_{2}\geq \|Ae_{j}\|^{2}_{2}.$$
 
Last edited:
GJA said:
This idea will work, we just need to note two small things:

1) For a set $S$ of non-negative numbers -- which $S=\{\|Ax\|_{2} : \|x\|_{2}\leq 1\}$ is -- $\sup_{x\in S} x^{2}=\left(\sup_{x\in S} x\right)^{2}.$ This follows from the continuity and monotonicity of the squaring function $x\mapsto x^{2}$ on the non-negative half-line.

2) For each $e_{j}$, $\|Ae_{j}\|_{2}^{2}\leq \|A\|^{2}$, because, using point (1) above,
$$\|A\|^{2}=\left(\sup_{\|x\|_{2}\leq 1}\|Ax\|_{2} \right)^{2}=\sup_{\|x\|_{2}\leq 1}\|Ax\|^{2}_{2}\geq \|Ae_{j}\|^{2}_{2}.$$

Ah I see! Thank you so much! (Yes)
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 19 ·
Replies
19
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 0 ·
Replies
0
Views
928
  • · Replies 8 ·
Replies
8
Views
2K