MHB Equivalent Norms: Proving $\|A\| \leq \|A\|_{Eucl} \leq \sqrt{n}\|A\|$

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Equivalent
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $A=(a_{i,j})$ a real matrix with $m$ rows and $n$ columns, $x\in \mathbb{R}^n$ and \begin{equation*}\|A\|:=\sup_{\|x\|_2\leq 1}\|Ax\|_2, \ \ \|A\|_{\text{Eucl}}:=\sqrt{\sum_{i=1}^m\sum_{j=1}^n|a_{i,j}|^2}\end{equation*}

I want to show that $$\|A\|\leq \|A\|_{\text{Eucl}} \leq \sqrt{n}\|A\|$$ I have already shown the first inequality:

Since $\displaystyle{(Ax)_i=\sum_{j=1}^na_{i,j}x_j}$, we get $\displaystyle{\|Ax\|_2^2=\sum_{i=1}^m\left (\sum_{j=1}^n|a_{i,j}x_j|\right )^2=\sum_{i=1}^m\left (\sum_{j=1}^n|a_{i,j}||x_j|\right )^2}$.

From the Cauchy–Schwarz inequality we get \begin{equation*}\left (\sum_{j=1}^n|a_{i,j}||x_j|\right )^2\leq \left (\sum_{j=1}^n{|a_{i,j}|^2}\right )\left (\sum_{j=1}^n|x_j|^2\right )=\left (\sum_{j=1}^n{|a_{i,j}|^2}\right )\|x\|_2^2\end{equation*}

Sp we get\begin{equation*}\|Ax\|_2^2=\sum_{i=1}^n\left (\sum_{j=1}^n|a_{i,j}||x_j|\right )^2\leq \sum_{i=1}^m\sum_{j=1}^n|a_{i,j}|^2\|x\|_2^2=\|A\|_{\text{Eucl}}^2\,\|x\|_2^2 \end{equation*}

Therefore we have that \begin{equation*}\|Ax\|_2\leq \|A\|_{\text{Eucl}}\,\|x\|_2\Rightarrow \sup_{\|x\|_2\leq 1}\|Ax\|_2\leq \sup_{\|x\|_2\leq 1}\|A\|_{\text{Eucl}}\,\|x\|_2=\|A\|_{\text{Eucl}}\end{equation*}

From that it implies that $\|A\|\leq \|A\|_{\text{Eucl}}$. Is everything correct? (Wondering)
Could you give me a hint for the second inequality? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

Let $A=(a_{i,j})$ a real matrix with $m$ rows and $n$ columns, $x\in \mathbb{R}^n$ and \begin{equation*}\|A\|:=\sup_{\|x\|_2\leq 1}\|Ax\|_2, \ \ \|A\|_{\text{Eucl}}:=\sqrt{\sum_{i=1}^m\sum_{j=1}^n|a_{i,j}|^2}\end{equation*}

I want to show that $$\|A\|\leq \|A\|_{\text{Eucl}} \leq \sqrt{n}\|A\|$$ I have already shown the first inequality:
.
.
.
Is everything correct? (Wondering)
Yes!

mathmari said:
Could you give me a hint for the second inequality? (Wondering)
You could use the fact that $\|A\|_{\text{Eucl}}^2 = \text{tr}\,(A^TA)$ (where tr denotes the trace and $A^T$ is the transpose of $A$).
 
Opalg said:
You could use the fact that $\|A\|_{\text{Eucl}}^2 = \text{tr}\,(A^TA)$ (where tr denotes the trace and $A^T$ is the transpose of $A$).

What do we get from that? I got stuck right now. (Wondering) Could we do also something like the following?
\begin{align*}\|A\|_{\text{Eucl}}^2=\sum_{i=1}^m\sum_{j=1}^n|a_{i,j}|^2=\sum_{j=1}^n\sum_{i=1}^m|a_{i,j}|^2=\sum_{j=1}^n\|a_j\|_2^2=\sum_{j=1}^n\|Ae_j\|_2^2\leq \sum_{j=1}^n\|A\|_2^2\|e_j\|_2^2=n\|A\|_2^2\end{align*} But instead of $\|A\|$ we have $\|A\|_2$. Is the above correct? If yes, can we get to $\|A\|$ ? (Wondering)
 
Hi mathmari,

mathmari said:
Could we do also something like the following?
\begin{align*}\|A\|_{\text{Eucl}}^2=\sum_{i=1}^m\sum_{j=1}^n|a_{i,j}|^2=\sum_{j=1}^n\sum_{i=1}^m|a_{i,j}|^2=\sum_{j=1}^n\|a_j\|_2^2=\sum_{j=1}^n\|Ae_j\|_2^2\leq \sum_{j=1}^n\|A\|_2^2\|e_j\|_2^2=n\|A\|_2^2\end{align*} But instead of $\|A\|$ we have $\|A\|_2$. Is the above correct? If yes, can we get to $\|A\|$ ? (Wondering)

This idea will work, we just need to note two small things:

1) For a set $S$ of non-negative numbers -- which $S=\{\|Ax\|_{2} : \|x\|_{2}\leq 1\}$ is -- $\sup_{x\in S} x^{2}=\left(\sup_{x\in S} x\right)^{2}.$ This follows from the continuity and monotonicity of the squaring function $x\mapsto x^{2}$ on the non-negative half-line.

2) For each $e_{j}$, $\|Ae_{j}\|_{2}^{2}\leq \|A\|^{2}$, because, using point (1) above,
$$\|A\|^{2}=\left(\sup_{\|x\|_{2}\leq 1}\|Ax\|_{2} \right)^{2}=\sup_{\|x\|_{2}\leq 1}\|Ax\|^{2}_{2}\geq \|Ae_{j}\|^{2}_{2}.$$
 
Last edited:
GJA said:
This idea will work, we just need to note two small things:

1) For a set $S$ of non-negative numbers -- which $S=\{\|Ax\|_{2} : \|x\|_{2}\leq 1\}$ is -- $\sup_{x\in S} x^{2}=\left(\sup_{x\in S} x\right)^{2}.$ This follows from the continuity and monotonicity of the squaring function $x\mapsto x^{2}$ on the non-negative half-line.

2) For each $e_{j}$, $\|Ae_{j}\|_{2}^{2}\leq \|A\|^{2}$, because, using point (1) above,
$$\|A\|^{2}=\left(\sup_{\|x\|_{2}\leq 1}\|Ax\|_{2} \right)^{2}=\sup_{\|x\|_{2}\leq 1}\|Ax\|^{2}_{2}\geq \|Ae_{j}\|^{2}_{2}.$$

Ah I see! Thank you so much! (Yes)
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
12
Views
2K
Replies
19
Views
4K
Replies
3
Views
2K
Replies
23
Views
2K
Replies
2
Views
1K
Replies
4
Views
1K
Replies
0
Views
394
Back
Top