Error Propagation: Solutions to Complex Equations

coregis
Messages
17
Reaction score
0
Always the easy things we forget...
I know how errors propogate through multiplication or division when every term has an error, but how do I propagate errors in equations when only one term has an uncertainty? I want to say just multiply and divide the uncertainty value by the constants, i.e plug my value in the equation, then plug the uncertainty. This is the same as if I just found the % uncertainty, and multiplied the final product by that, correct? Is this the right way to go about this? And what if two (or more) terms have uncertainties? Would I find the uncertainty between those terms and then apply that % to the final number? Thanks.
 
Last edited:
Mathematics news on Phys.org
If you mean something like y= ax+ b where a and b are exactly defined constants and x is measurement: x= m+/- e, then the largest possible value is a(m+e)+b= am+ ae+ b= (am+b)+ ae and the smallest possible is a(m-e)+ b= am-ae+ b= (am+b)- ae.

That is: (am+ b)+/- ae. Any added constants you can ignore. Constants multiplied by x multiply the error. Same for percentage error.

With more than one "uncertain" number you can get the exact error by calculating the maximum and minimum. A "rule of thumb" (good approximation but not exact) is that when you add or subtract measurements, the errors add, when you multiply or divide measurements, the percentage errors add.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top