Escape Velocity and planet’s gravitational field

AI Thread Summary
The discussion focuses on calculating the escape velocity for an object on Pluto's surface, emphasizing that the kinetic energy required to escape equals the gravitational potential energy at that point. The formula derived is v = √(2GM/R), leading to an escape velocity of approximately 1205 m/s. Participants confirm that overcoming the potential energy at the surface is essential for escape. Additionally, advice is given to consider the negative sign in gravitational potential energy when approaching such problems in tests. The conversation highlights the importance of understanding energy conservation in gravitational fields.
RoryP
Messages
75
Reaction score
0

Homework Statement


The escape velocity is the velocity of an object at the surface of a planet that would
allow it to be removed completely from the planet’s gravitational field.
Calculate the escape velocity for an object on the surface of Pluto.

mass of Pluto: 1.3 *1022
radius of Pluto: 1.2 *106
G= 6.7 *10-11

Homework Equations


EK= 1/2mv2
Potential Energy= GM1M2/R


The Attempt at a Solution


I think i have this correct but i don't have the answers to check! So i need a professional opinion =]
So at the surface would i be right in saying the kinetic energy required to leave the planet will be equal to the Potential the body has at the surface of the planet??
So, 1/2mv2= GM1M2/R
(the mass of the object will cancel)
v=[square root]{2GM/R}
v=[square root]{2*6.7 *10-11*1.3 *1022/1.2 *106
v= 1205 ms-1
Is this the right answer?? not entirely sure!
 
Physics news on Phys.org
RoryP said:

Homework Statement


The escape velocity is the velocity of an object at the surface of a planet that would
allow it to be removed completely from the planet’s gravitational field.
Calculate the escape velocity for an object on the surface of Pluto.

mass of Pluto: 1.3 *1022
radius of Pluto: 1.2 *106
G= 6.7 *10-11

Homework Equations


EK= 1/2mv2
Potential Energy= GM1M2/R


The Attempt at a Solution


I think i have this correct but i don't have the answers to check! So i need a professional opinion =]
So at the surface would i be right in saying the kinetic energy required to leave the planet will be equal to the Potential the body has at the surface of the planet??
So, 1/2mv2= GM1M2/R
(the mass of the object will cancel)
v=[square root]{2GM/R}
v=[square root]{2*6.7 *10-11*1.3 *1022/1.2 *106
v= 1205 ms-1
Is this the right answer?? not entirely sure!

Yes. You need to overcome the potential at the surface. 1/2mV2 = Gmp/rp

Where rp and mp are the radius and mass of the dwarf planet Pluto
 
ahhh sweet cheers! =]
 
Hi ,
I suggest in question like this in a test:
Don't write right away GMm/R=Mv^2/2
say that Potential energy = -GMm/R notice the negative sign.
and in infinity the energy==0
than Initial kinetic energy + (which will get us minus here) potential energy=0(getting to infinity).

Just An advice from some 1 that suffered this thing on his flesh :D
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...

Similar threads

Back
Top