Estimate Air Density in ICE at Different Throttle Speeds

AI Thread Summary
Estimating charge density in an internal combustion engine (ICE) involves considering both temperature and pressure conditions. At wide open throttle, manifold pressure approximates atmospheric levels, allowing for higher air density. However, at lower throttle settings, reduced manifold pressure can significantly decrease density, raising questions about the accuracy of density calculations. The discussion also highlights the impact of temperature variations along an airflow path, noting that air density changes with temperature, affecting engine performance. Overall, understanding these dynamics is crucial for optimizing airflow and engine efficiency.
TexanJohn
Messages
52
Reaction score
0
How would you estimate the charge density (air actually entering the cylinder) in an ICE? Assume the outside is standard pressure and temperature of 15*C (60* F) and 101.3kPa (14.7psi). At high airflow speeds (Wide Open Throttle), pressure in the manifold should approximate atmospheric conditions. There is also less time for heat soak while the air travels to the cylinder.

What about a lower throttle (air speeds)? Assume the manifold pressure is 50kPa, but we keep the temperature constant. Is the density really half of the atmospheric conditions (using 2.7 * P / T ; P in psi and T in *R)?
 
Engineering news on Phys.org
Anyone have a thought? :)
 
Nobody. :frown:


Let me ask the question this way: :)

What if I had a long tube, and I was pushing/pulling air through this tube. Assume that there are signifcant temperature differences along the tube:

100* -20* 50*
---|---------------------|---------------------------|--------------

-> -> -> Airflow -> -> ->

---|---------------------|---------------------------|--------------


If I could "capture" part of the air at the temperature points above, is the density different at each point? Assume that a fan is pushing air through the tube at a rate of 200cfm and the air entering is 60*F and 101.3kPa.
 
TexanJohn said:
How would you estimate the charge density (air actually entering the cylinder) in an ICE?

What is ICE?
 
zoki85 said:
What is ICE?

Internal Combustion Engine


Is that why no one has responded? Where have all the IC engine gurus gone? :)


Just curious about thoughts on the effects of heat and pressure relating to airflow into an engine. Since the engine is not static nor a 'closed system'(I am sure that I am not using that term correctly. e.g. like a balloon filled with air; heat it, it expands, same mass but now more volume, thus less dense), I was curious about the effects of heat (and pressure) on the air entering the engine. The intake manifold, intake ports, etc. can't expand like the balloon, but the air can flow backwards through the system. i.e. back out through the TB the wrong direction. As air enters the engine and is heated, does the air 'expand', does this alter (slow) the airflow rate, etc.
 
Yes, as the air picks up heat during the induction process, it expands, and you get less charge into the cylinders. This is exactly why air inlets on performance cars are sited to ensure the source is as cold as possible, why intercoolers work so well, and why your car seems to have better performance on a cold day.

I'd not done any replying cos I've just bought a house and been moving in!
 
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
I need some assistance with calculating hp requirements for moving a load. - The 4000lb load is resting on ball bearing rails so friction is effectively zero and will be covered by my added power contingencies. Load: 4000lbs Distance to travel: 10 meters. Time to Travel: 7.5 seconds Need to accelerate the load from a stop to a nominal speed then decelerate coming to a stop. My power delivery method will be a gearmotor driving a gear rack. - I suspect the pinion gear to be about 3-4in in...
Back
Top