Is the Time of Matter-Radiation Equality Correctly Represented?

bananabandana
Messages
112
Reaction score
5

Homework Statement


Show that the time of matter-radiation equality, t_{eq} can be written:
$$ t_{eq} =\frac{a_{eq}^{\frac{3}{2}}}{H_{0}\sqrt{\Omega_{m}}} \int_{0}^{1} \frac{x}{\sqrt{x+1}} dx $$

Homework Equations


$$ t = \int_{0}^{t} dt = \int_{0}^{a} \frac{1}{H(a)} \frac{da}{a} $$ [Given]
$$ H^{2}(a) \approx H^{2}_{0} \bigg( \frac{\Omega_{m}}{a^{3}} + \frac{\Omega_{r}}{a^{4}}\bigg)$$

The Attempt at a Solution


[/B]
I won't write it out here - it's just a lot of algebra - but substitute the definition of ##H(a)## into the equation for the time and rearrange is clearly what you need to do.

I got stuck however, because apparently you are meant to say: [this is in the solution set provided by my lecturer]
$$ \bigg( \frac{\Omega_{m}}{\Omega_{r}} \bigg) = \frac{1}{1+z_{eq}} = a_{eq}$$
This makes no sense to me at all! At matter-radiation equality, we could expect, by definition:
$$ \frac{\Omega_{m}}{\Omega_{r}}=1 \implies z_{eq} = 0$$
i.e matter-radiation equilibrium is occurring right now, which is obviously nonsense. [and would conflict completely with the result we are trying to show]

Have I misunderstood something?

Thanks!
 
Physics news on Phys.org
Problem solved!

The point is that at matter radiation equality, we must have that:

$$ \frac{\rho_{M}}{\rho_{R}} = 1 $$

This does NOT mean that:

$$ \frac{\Omega_{M}}{\Omega_{R}} = 1 $$ Since :

$$ \frac{\rho_{M}}{\rho_{R}} = \frac{\frac{\Omega_{M}}{a^{3}}}{\frac{\Omega_{R}}{a^{4}}} = \frac{1}{a}\frac{\Omega_{M}}{\Omega_{R}} $$

So at radiation matter equality, we have:

$$ \frac{1}{a_{eq}}\frac{\Omega_{M}}{\Omega_{R}} = 1 \implies \frac{\Omega_{M}}{\Omega_{R}} = \frac{1}{1+z_{eq}} $$ as req'd.
 
Opps, I posted an incorrect statement and don't know how to delete this post... sorry.

Correction:
I don't think the 3rd equation is correct? is it?
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top