Philip Wong
- 95
- 0
Homework Statement
estimate the volume of the solid
z=-2(x^2+y^2)+8
between the two plates z=4 and z=0
Homework Equations
In question like this, should I use triple integrals or double integrals in polar coordinates? I'm stuck in between which to use, because the question asks to estimate the volume which suggest a triple integrals. Yet the function gives me a strong feeling that I should use a double integrals in polar coordinates instead. Any suggestions?
Even though I'm not sure have I done it right, I tried solving it using double integrals in polar coordinates. Please check have I done it right, and if I should do it in triple integrals do please give me a guideline of how to do it (as it has not been taught to us yet, but the assignment is due before our next class)
p={(r,θ)= 0≤ r ≤4, 0≤ θ ≤ \pi
∫∫_{p} -2(x2+y2)+8=∫^{\pi}_{0}∫^{4}_{0}
The Attempt at a Solution
∫∫_{p} -2(x2+y2)+8=∫^{\pi}_{0}∫^{4}_{0}-2(r2)r Δr Δθ
∫^{\pi}_{0}∫^{4}_{0} -2r3 Δr Δθ
∫^{\pi}_{0} [-2r4/4]^{4}_{0} Δθ
∫^{\pi}_{0}[-2(4)4/4]-[-2(0)4/4] Δθ
∫^{\pi}_{0}-128 Δθ
[-128θ]^{\pi}_{0}
=-128\pi