- #1
songoku
- 2,328
- 336
- Homework Statement
- Calculate the volume of solid having triangle base with vertices (0, 0) , (2, 0) and (0, 3) whose slice perpendicular to x-axis is semicircle
- Relevant Equations
- Volume = ##\int_p^{q} A(x) dx##
First, I tried to find the equation of line passing through (2, 0) and (0, 3) and I got ##y=3-\frac{3}{2}x##
Then I set up equation for the area of one slice, ##A(x)##
$$A(x)=\frac{1}{2} \pi r^2$$
$$=\frac{1}{2} \pi \left( \frac{1}{2}y\right)^2$$
$$=\frac{1}{2} \pi \left(\frac{3}{2}-\frac{3}{4}x \right)^2$$
Am I correct until this point? Thanks
Then I set up equation for the area of one slice, ##A(x)##
$$A(x)=\frac{1}{2} \pi r^2$$
$$=\frac{1}{2} \pi \left( \frac{1}{2}y\right)^2$$
$$=\frac{1}{2} \pi \left(\frac{3}{2}-\frac{3}{4}x \right)^2$$
Am I correct until this point? Thanks