Euclid's Algorithm Homework: Stuck & Need Help

  • Thread starter Thread starter Mattofix
  • Start date Start date
  • Tags Tags
    Algorithm
Physics news on Phys.org
Look at 5 and 7. I cleverly observe that 3*5-2*7=1. Now any integer is a multiple of 1, right?
 
yeah...
 
...go on...
 
So n=(3*n)*5+(-2*n)*7. Doesn't that look like a linear combination of 5 and 7?
 
:)

great - thanks - i have got all the others now.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top