Euler-Lagrange equation: pulley system

AI Thread Summary
The discussion revolves around applying the Euler-Lagrange equation to a pulley system involving two masses, m_A and m_B, with given values. The Lagrangian is derived from the kinetic and potential energy, leading to the equation for acceleration, which the user initially calculates as 1.9604 m/s², while the expected answer is 1.78 m/s². Confusion arises regarding the relationship between the heights of the two masses, y_A and y_B, particularly the equation y_A + y_B = c, which is questioned for its validity. Participants suggest expressing the total length of the string in terms of y_A and y_B to clarify the setup. The user expresses frustration over the complexity of the problem but seeks guidance on correctly formulating the relationships involved.
bookworm031
Messages
3
Reaction score
0
Homework Statement
Determine, using Euler-Lagrange's equation, the acceleration for B when the weights are moving vertically.
Relevant Equations
##\frac{d}{dt}\bigg(\frac{\partial L}{\partial \dot{y}}\bigg) = \frac{\partial L}{\partial y}##, ##L = T - V##
atwood.png


##m_{A} = 3 kg##
##m_{B} = 2 kg##

##y_{A} + y_{B} = c \Leftrightarrow y_{A} = c - y_{B}##, where c is a constant.
##\Rightarrow \dot{y_{A}} = -\dot{y_{B}}##

The Lagrangian:
$$L = T - V$$
##T =\frac{1}{2}m_{A}\dot{y_{B}}^{2} + \frac{1}{2}m_{B}\dot{y_{B}}^{2}##
##V = m_{A}g(c - y_{B}) + m_{B}gy_{B}##
##\Leftrightarrow L = \frac{1}{2}m_{A}\dot{y_{B}}^{2} + \frac{1}{2}m_{B}\dot{y_{B}}^{2} - (m_{A}g(c - y_{B}) + m_{B}gy_{B})##

Applying Euler-Lagrange's equation:

##\frac{d}{dt}\bigg(\frac{\partial L}{\partial \dot{y}}\bigg) = \ddot{y_{B}}(m_{B} + m_{A})##
##\frac{\partial L}{\partial y} = g(m_{A} - m_{B})##

Solving for ##\ddot{y_{B}}##:
##\ddot{y_{B}} = \frac{g(m_{A} - m_{B})}{(m_{B} + m_{A})} = 1.9604 \frac{m}{s^{2}}##

The answer is supposed to be ##1.78 \frac{m}{s^{2}}##. What am I doing wrong? I'm completely lost.

Thanks!
 
Last edited:
Physics news on Phys.org
bookworm031 said:
##y_{A} + y_{B} = c ##, where c is a constant.
Sure?
 
haruspex said:
Sure?
No. However, the rationale was that, since one weight moves down as the other moves up, and vice versa, the difference should always be a constant. Do you think this is wrong? If so, what's the relationship between ##y_{A}## and ##y_{B}##?

Edit: Now that I think about it, ##y_{A} + y_{B} = c## doesn't make much sense, though I'm still not sure how to set up a relationship.
 
Last edited:
bookworm031 said:
No. However, the rationale was that, since one weight moves down as the other moves up, and vice versa, the difference should always be a constant. Do you think this is wrong? If so, what's the relationship between ##y_{A}## and ##y_{B}##?

Edit: Now that I think about it, ##y_{A} + y_{B} = c## doesn't make much sense, though I'm still not sure how to set up a relationship.
Express the total length of the string in terms of the three straight parts. Don't worry about the semicircular arcs since those are constant.
 
  • Like
Likes Lnewqban and PhDeezNutz
haruspex said:
Express the total length of the string in terms of the three straight parts. Don't worry about the semicircular arcs since those are constant.
I don't know why I find this so difficult, I feel very stupid right now. I should express the total length only in terms of ##y_{A}## and ##y_{B}##, right? I've been staring myself blind at this figure.
 
bookworm031 said:
I don't know why I find this so difficult, I feel very stupid right now. I should express the total length only in terms of ##y_{A}## and ##y_{B}##, right? I've been staring myself blind at this figure.
Let the lengths of the string sections, numbered from the left, be L1, L2, L3.
Allow also a constant Lf for the short fixed string supporting the upper pulley.
What equations can you write relating these to ##y_{A}## and ##y_{B}##?
Can you then find L1+L2+L3 in terms of ##y_{A}##, ##y_{B}, L_f##?
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top