A Solving Euler's Principal Axis for Rigid Bodies

AI Thread Summary
Euler's differential equations for rigid bodies yield angular acceleration and velocity, but integrating angular velocity is complex, leading to the representation of attitude as a product of an angle and a principal axis. Concerns arise regarding the assumption that the principal axis remains fixed over time, suggesting it should also change. The discussion highlights that angular velocities can be represented by vectors, despite angles not commuting under addition. The assumption that angular velocity is parallel to the principal axis simplifies the analysis, aligning with the transport theorem. Ultimately, the approach leads to a valid solution, confirming the assumptions made in the lecture.
kiuhnm
Messages
66
Reaction score
1
When we solve Euler's differential equations for rigid bodies we find the angular acceleration ##\dot{\boldsymbol\omega}## and then the angular velocity ##\boldsymbol\omega##. Integrating ##\boldsymbol\omega## is less straightforward, so we start from a representation of the attitude, take its derivative and equate it to ##\boldsymbol\omega##.

The attitude can be represented as ##\boldsymbol\gamma=\phi\hat{\boldsymbol e}##, where ##\hat{\boldsymbol e}## is the principal axis of the rotation. In a course I'm watching online, the professor computes the derivative of ##\boldsymbol\gamma## as follows:$$
\dot{\boldsymbol\gamma} = \dot\phi \hat{\boldsymbol e}
$$
Wouldn't that be correct only for a fixed ##\hat{\boldsymbol e}##? Shouldn't we assume ##\hat{\boldsymbol e}## is changing in time as well?
 
Physics news on Phys.org
kiuhnm said:
The attitude can be represented as ##\boldsymbol\gamma=\phi\hat{\boldsymbol e}##,
That sure bothers me... angles cannot generally be represented by vectors because they do not commute under addition!
(But they do commute differentially, and so angular velocities can be represented by (pseudo-)vectors.)

kiuhnm said:
where ##\hat{\boldsymbol e}## is the principal axis of the rotation. In a course I'm watching online
I’ve never heard of “the” principle axis... only the principle axes (plural). Perhaps you’re thinking about an object with an axis of symmetry, like a top? Maybe you could link the lecture video so people have more context.
 
Hiero said:
I’ve never heard of “the” principle axis... only the principle axes (plural). Perhaps you’re thinking about an object with an axis of symmetry, like a top? Maybe you could link the lecture video so people have more context.

You're probably thinking about the eigendecomposition of the inertia matrix. This is something unrelated to that.

Here's the lecture:

It turns out we're assuming that ##\boldsymbol\omega## is parallel to the principal axis ##\hat{\boldsymbol e}## so, by the transport theorem, the inertial derivative is equal to the derivative wrt the frame ##B##. Time to watch the lecture again to see how this assumption is justified.

The lecture is split in short videos. Here's the video with the playlist:
h t t p s://www.youtube.com/watch?v=KQ6jEPe97co&index=1&list=PLCheZLRn7G_yaRHqMjcZrpxzEB8ZUXtjJ

edit: I had it backwards. By making the assumption that ##\dot{\boldsymbol\gamma} = \boldsymbol\omega## either we come to a contradiction or we find a solution which respects that assumption. In this case, everything works out just fine.
 
Last edited:
Thread 'Gauss' law seems to imply instantaneous electric field'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
I passed a motorcycle on the highway going the opposite direction. I know I was doing 125/km/h. I estimated that the frequency of his motor dropped by an entire octave, so that's a doubling of the wavelength. My intuition is telling me that's extremely unlikely. I can't actually calculate how fast he was going with just that information, can I? It seems to me, I have to know the absolute frequency of one of those tones, either shifted up or down or unshifted, yes? I tried to mimic the...
Back
Top