bigplanet401
- 101
- 0
Evaluate:
<br /> \frac{1}{\sqrt{2\pi} \sigma} \int_{-\infty}^{\infty} \, dx \, exp\left[-\frac{(x - \mu)^2}{2\sigma^2}\right] \, ,<br />
where $\mu$ and $\sigma$ are complex numbers.
I tried writing
<br /> \begin{align}<br /> \sigma &= s_1 + is_2 \,\\<br /> \mu &= m_1 + i m_2 \, .<br /> \end{align}<br />
The integral turned into
<br /> \int_{-\infty}^{\infty} \, dx \, e^{x(A + iB)} e^C \, ,<br />
where A, B and C are constants. But then things got dark.
<br /> \frac{1}{\sqrt{2\pi} \sigma} \int_{-\infty}^{\infty} \, dx \, exp\left[-\frac{(x - \mu)^2}{2\sigma^2}\right] \, ,<br />
where $\mu$ and $\sigma$ are complex numbers.
I tried writing
<br /> \begin{align}<br /> \sigma &= s_1 + is_2 \,\\<br /> \mu &= m_1 + i m_2 \, .<br /> \end{align}<br />
The integral turned into
<br /> \int_{-\infty}^{\infty} \, dx \, e^{x(A + iB)} e^C \, ,<br />
where A, B and C are constants. But then things got dark.