Evaluating the Integral: \iiint_{V} (16x^2 + 9y^2 + 4z^2)^{1/4} \,dx\,dy\,dz

  • Thread starter Thread starter Stevecgz
  • Start date Start date
  • Tags Tags
    Integral
Stevecgz
Messages
68
Reaction score
0
I am trying to evaluate the following:

<br /> \iiint_{V} (16x^2 + 9y^2 + 4z^2)^{1/4} \,dx\,dy\,dz<br />

Where V is the ellipsoid 16x^2 + 9y^2 + 4z^2 \leq 16

This is what I've done:

Change of variables with
<br /> u^2 = 16x^2<br />
<br /> v^2 = 9y^2<br />
<br /> w^2 = 4z^2<br />

Then V is the sphere
u^2 + v^2 + z^2 \leq 16

And the jacobian is
\frac{1}{24}

Than another Change of variables to Spherical cordinates, so the resulting integral is:

\int_{0}^{2\pi} \int_{0}^{pi} \int_{0}^{4} (\rho^2)^{1/4}\rho^2\sin\phi\frac{1}{24} \,d\rho\, d\phi\, d\theta

My question is if I am going about this the correct way and if it is ok to make two change of variables as I have done. Thanks.

Steve
 
Last edited:
Physics news on Phys.org
You can always do as many change of variables as you wish, but be carefull with the jacobian. You can even "invent" your own set of coordinates and integrate in these particular coordinates.
 
Thanks Gagle.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top