Re: integral-03
Let's generalize a little...
We are given to evaluate:
$$I=\int_0^{2\pi}x^2\cos\left(nx+m\frac{\pi}{2} \right)\,dx$$ where (presumably) $$n\in\mathbb{N},\,m\in\{0,1,2,3\}$$
Using integration by parts, we may let:
$$u=x^2\,\therefore\,du=2x\,dx$$
$$dv=\cos\left(nx+m\frac{\pi}{2} \right)\,dx\,\therefore\,v=\frac{1}{n}\sin\left(nx+m\frac{\pi}{2} \right)$$
And we have:
$$I=\left.\frac{x^2}{n}\sin\left(nx+m\frac{\pi}{2} \right) \right|_0^{2\pi}-\frac{2}{n}\int_0^{2\pi} x\sin\left(nx+m\frac{\pi}{2} \right)\,dx$$
$$I=\frac{4\pi^2}{n}\sin\left(m\frac{\pi}{2} \right)-\frac{2}{n}\int_0^{2\pi} x\sin\left(nx+m\frac{\pi}{2} \right)\,dx$$
Using integration by parts again, where:
$$u=x\,\therefore\,du=dx$$
$$dv=\sin\left(nx+m\frac{\pi}{2} \right)\,dx\,\therefore\,v=-\frac{1}{n}\cos\left(nx+m\frac{\pi}{2} \right)$$
Now we have:
$$I=\frac{4\pi^2}{n}\sin\left(m\frac{\pi}{2} \right)+\frac{2}{n}\left( \left.\frac{x}{n}\cos\left(nx+m\frac{\pi}{2} \right) \right|_0^{2\pi}+\frac{1}{n}\int_0^{2\pi}\cos\left(nx+m\frac{\pi}{2} \right)\,dx \right)$$
$$I=\frac{4\pi^2}{n}\sin\left(m\frac{\pi}{2} \right)+ \frac{2}{n}\left(\frac{2\pi}{n}\cos\left(m \frac{\pi}{2} \right)+\left.\frac{1}{n^2}\sin\left(nx+m\frac{\pi}{2} \right) \right|_0^{2\pi} \right)$$
$$I=\frac{4\pi^2}{n}\sin\left(m\frac{\pi}{2} \right)+\frac{4\pi}{n^2}\cos\left(m\frac{\pi}{2} \right)$$
Thus, we may state:
$$m=0\implies\int_0^{2\pi}x^2\cos\left(nx \right)\,dx=\frac{4\pi}{n^2}$$
$$m=1\implies-\int_0^{2\pi}x^2\sin\left(nx \right)\,dx=\frac{4\pi^2}{n}$$
$$m=2\implies-\int_0^{2\pi}x^2\cos\left(nx \right)\,dx=-\frac{4\pi}{n^2}$$
$$m=3\implies\int_0^{2\pi}x^2\sin\left(nx \right)\,dx=-\frac{4\pi^2}{n}$$