MHB Evaluating the Integral $\int_{0}^{2\pi}x^2 cos(nx)\, dx$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Dx Integral
Click For Summary
The integral $\int_{0}^{2\pi}x^2 \cos(nx)\, dx$ evaluates to $\frac{4\pi}{n^2}$ for $n \in \mathbb{N}$. This result is derived using integration by parts, first applying it to express the integral in terms of another integral involving $x \sin(nx)$. A second application of integration by parts leads to the final expression. The discussion also explores a generalized form of the integral, incorporating a phase shift, which yields similar results for specific values of $m$. Overall, the evaluations highlight the relationships between the integrals of cosine and sine functions with polynomial terms.
Albert1
Messages
1,221
Reaction score
0
evaluate :

$\int_{0}^{2\pi}x^2 cos(nx)\, dx$
 
Mathematics news on Phys.org
Re: integral-03

We are given to evaluate:

$$I=\int_0^{2\pi}x^2\cos(nx)\,dx$$ where (presumably) $$n\in\mathbb{N}$$

Using integration by parts, we may let:

$$u=x^2\,\therefore\,du=2x\,dx$$

$$dv=\cos(nx)\,dx\,\therefore\,v=\frac{1}{n}\sin(nx)$$

And we have:

$$I=\left.\frac{x^2}{n}\sin(nx) \right|_0^{2\pi}-\frac{2}{n}\int_0^{2\pi} x\sin(nx)\,dx$$

$$I=-\frac{2}{n}\int_0^{2\pi} x\sin(nx)\,dx$$

Using integration by parts again, where:

$$u=x\,\therefore\,du=dx$$

$$dv=\sin(x)\,dx\,\therefore\,v=-\frac{1}{n}\cos(nx)$$

Now we have:

$$I=\frac{2}{n}\left(\left.\frac{x}{n}\cos(nx) \right|_0^{2\pi}+\frac{1}{n}\int_0^{2\pi}\cos(nx)\,dx \right)$$

$$I=\frac{2}{n}\left(\frac{2\pi}{n}+\left.\frac{1}{n^2}\sin(nx) \right|_0^{2\pi} \right)$$

$$I=\frac{4\pi}{n^2}$$

Thus, we may state:

$$\int_0^{2\pi}x^2\cos(nx)\,dx=\frac{4\pi}{n^2}$$
 
Re: integral-03

perfect (Yes) you got it
 
Re: integral-03

Let's generalize a little...

We are given to evaluate:

$$I=\int_0^{2\pi}x^2\cos\left(nx+m\frac{\pi}{2} \right)\,dx$$ where (presumably) $$n\in\mathbb{N},\,m\in\{0,1,2,3\}$$

Using integration by parts, we may let:

$$u=x^2\,\therefore\,du=2x\,dx$$

$$dv=\cos\left(nx+m\frac{\pi}{2} \right)\,dx\,\therefore\,v=\frac{1}{n}\sin\left(nx+m\frac{\pi}{2} \right)$$

And we have:

$$I=\left.\frac{x^2}{n}\sin\left(nx+m\frac{\pi}{2} \right) \right|_0^{2\pi}-\frac{2}{n}\int_0^{2\pi} x\sin\left(nx+m\frac{\pi}{2} \right)\,dx$$

$$I=\frac{4\pi^2}{n}\sin\left(m\frac{\pi}{2} \right)-\frac{2}{n}\int_0^{2\pi} x\sin\left(nx+m\frac{\pi}{2} \right)\,dx$$

Using integration by parts again, where:

$$u=x\,\therefore\,du=dx$$

$$dv=\sin\left(nx+m\frac{\pi}{2} \right)\,dx\,\therefore\,v=-\frac{1}{n}\cos\left(nx+m\frac{\pi}{2} \right)$$

Now we have:

$$I=\frac{4\pi^2}{n}\sin\left(m\frac{\pi}{2} \right)+\frac{2}{n}\left( \left.\frac{x}{n}\cos\left(nx+m\frac{\pi}{2} \right) \right|_0^{2\pi}+\frac{1}{n}\int_0^{2\pi}\cos\left(nx+m\frac{\pi}{2} \right)\,dx \right)$$

$$I=\frac{4\pi^2}{n}\sin\left(m\frac{\pi}{2} \right)+ \frac{2}{n}\left(\frac{2\pi}{n}\cos\left(m \frac{\pi}{2} \right)+\left.\frac{1}{n^2}\sin\left(nx+m\frac{\pi}{2} \right) \right|_0^{2\pi} \right)$$

$$I=\frac{4\pi^2}{n}\sin\left(m\frac{\pi}{2} \right)+\frac{4\pi}{n^2}\cos\left(m\frac{\pi}{2} \right)$$

Thus, we may state:

$$m=0\implies\int_0^{2\pi}x^2\cos\left(nx \right)\,dx=\frac{4\pi}{n^2}$$

$$m=1\implies-\int_0^{2\pi}x^2\sin\left(nx \right)\,dx=\frac{4\pi^2}{n}$$

$$m=2\implies-\int_0^{2\pi}x^2\cos\left(nx \right)\,dx=-\frac{4\pi}{n^2}$$

$$m=3\implies\int_0^{2\pi}x^2\sin\left(nx \right)\,dx=-\frac{4\pi^2}{n}$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K