Evaluating the Integral $\int_{0}^{2\pi}x^2 cos(nx)\, dx$

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Dx Integral
Click For Summary
SUMMARY

The integral $\int_{0}^{2\pi} x^2 \cos(nx) \, dx$ evaluates to $\frac{4\pi}{n^2}$ for natural numbers $n$. This result is derived using integration by parts, first letting $u = x^2$ and $dv = \cos(nx) \, dx$. A second integration by parts is applied to evaluate the resulting integral involving $x \sin(nx)$. The discussion also generalizes the integral to $\int_{0}^{2\pi} x^2 \cos\left(nx + m\frac{\pi}{2}\right) \, dx$, yielding specific results for $m = 0, 1, 2, 3$.

PREREQUISITES
  • Integration by parts
  • Understanding of trigonometric integrals
  • Knowledge of natural numbers ($\mathbb{N}$)
  • Familiarity with definite integrals
NEXT STEPS
  • Explore advanced techniques in integration by parts
  • Study the properties of Fourier series and their applications
  • Learn about the convergence of integrals involving oscillatory functions
  • Investigate the implications of generalized integrals in mathematical physics
USEFUL FOR

Mathematicians, physics students, and anyone interested in advanced calculus and integral evaluation techniques.

Albert1
Messages
1,221
Reaction score
0
evaluate :

$\int_{0}^{2\pi}x^2 cos(nx)\, dx$
 
Physics news on Phys.org
Re: integral-03

We are given to evaluate:

$$I=\int_0^{2\pi}x^2\cos(nx)\,dx$$ where (presumably) $$n\in\mathbb{N}$$

Using integration by parts, we may let:

$$u=x^2\,\therefore\,du=2x\,dx$$

$$dv=\cos(nx)\,dx\,\therefore\,v=\frac{1}{n}\sin(nx)$$

And we have:

$$I=\left.\frac{x^2}{n}\sin(nx) \right|_0^{2\pi}-\frac{2}{n}\int_0^{2\pi} x\sin(nx)\,dx$$

$$I=-\frac{2}{n}\int_0^{2\pi} x\sin(nx)\,dx$$

Using integration by parts again, where:

$$u=x\,\therefore\,du=dx$$

$$dv=\sin(x)\,dx\,\therefore\,v=-\frac{1}{n}\cos(nx)$$

Now we have:

$$I=\frac{2}{n}\left(\left.\frac{x}{n}\cos(nx) \right|_0^{2\pi}+\frac{1}{n}\int_0^{2\pi}\cos(nx)\,dx \right)$$

$$I=\frac{2}{n}\left(\frac{2\pi}{n}+\left.\frac{1}{n^2}\sin(nx) \right|_0^{2\pi} \right)$$

$$I=\frac{4\pi}{n^2}$$

Thus, we may state:

$$\int_0^{2\pi}x^2\cos(nx)\,dx=\frac{4\pi}{n^2}$$
 
Re: integral-03

perfect (Yes) you got it
 
Re: integral-03

Let's generalize a little...

We are given to evaluate:

$$I=\int_0^{2\pi}x^2\cos\left(nx+m\frac{\pi}{2} \right)\,dx$$ where (presumably) $$n\in\mathbb{N},\,m\in\{0,1,2,3\}$$

Using integration by parts, we may let:

$$u=x^2\,\therefore\,du=2x\,dx$$

$$dv=\cos\left(nx+m\frac{\pi}{2} \right)\,dx\,\therefore\,v=\frac{1}{n}\sin\left(nx+m\frac{\pi}{2} \right)$$

And we have:

$$I=\left.\frac{x^2}{n}\sin\left(nx+m\frac{\pi}{2} \right) \right|_0^{2\pi}-\frac{2}{n}\int_0^{2\pi} x\sin\left(nx+m\frac{\pi}{2} \right)\,dx$$

$$I=\frac{4\pi^2}{n}\sin\left(m\frac{\pi}{2} \right)-\frac{2}{n}\int_0^{2\pi} x\sin\left(nx+m\frac{\pi}{2} \right)\,dx$$

Using integration by parts again, where:

$$u=x\,\therefore\,du=dx$$

$$dv=\sin\left(nx+m\frac{\pi}{2} \right)\,dx\,\therefore\,v=-\frac{1}{n}\cos\left(nx+m\frac{\pi}{2} \right)$$

Now we have:

$$I=\frac{4\pi^2}{n}\sin\left(m\frac{\pi}{2} \right)+\frac{2}{n}\left( \left.\frac{x}{n}\cos\left(nx+m\frac{\pi}{2} \right) \right|_0^{2\pi}+\frac{1}{n}\int_0^{2\pi}\cos\left(nx+m\frac{\pi}{2} \right)\,dx \right)$$

$$I=\frac{4\pi^2}{n}\sin\left(m\frac{\pi}{2} \right)+ \frac{2}{n}\left(\frac{2\pi}{n}\cos\left(m \frac{\pi}{2} \right)+\left.\frac{1}{n^2}\sin\left(nx+m\frac{\pi}{2} \right) \right|_0^{2\pi} \right)$$

$$I=\frac{4\pi^2}{n}\sin\left(m\frac{\pi}{2} \right)+\frac{4\pi}{n^2}\cos\left(m\frac{\pi}{2} \right)$$

Thus, we may state:

$$m=0\implies\int_0^{2\pi}x^2\cos\left(nx \right)\,dx=\frac{4\pi}{n^2}$$

$$m=1\implies-\int_0^{2\pi}x^2\sin\left(nx \right)\,dx=\frac{4\pi^2}{n}$$

$$m=2\implies-\int_0^{2\pi}x^2\cos\left(nx \right)\,dx=-\frac{4\pi}{n^2}$$

$$m=3\implies\int_0^{2\pi}x^2\sin\left(nx \right)\,dx=-\frac{4\pi^2}{n}$$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K