MHB Evaluating the Integral $\int_{0}^{2\pi}x^2 cos(nx)\, dx$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Dx Integral
AI Thread Summary
The integral $\int_{0}^{2\pi}x^2 \cos(nx)\, dx$ evaluates to $\frac{4\pi}{n^2}$ for $n \in \mathbb{N}$. This result is derived using integration by parts, first applying it to express the integral in terms of another integral involving $x \sin(nx)$. A second application of integration by parts leads to the final expression. The discussion also explores a generalized form of the integral, incorporating a phase shift, which yields similar results for specific values of $m$. Overall, the evaluations highlight the relationships between the integrals of cosine and sine functions with polynomial terms.
Albert1
Messages
1,221
Reaction score
0
evaluate :

$\int_{0}^{2\pi}x^2 cos(nx)\, dx$
 
Mathematics news on Phys.org
Re: integral-03

We are given to evaluate:

$$I=\int_0^{2\pi}x^2\cos(nx)\,dx$$ where (presumably) $$n\in\mathbb{N}$$

Using integration by parts, we may let:

$$u=x^2\,\therefore\,du=2x\,dx$$

$$dv=\cos(nx)\,dx\,\therefore\,v=\frac{1}{n}\sin(nx)$$

And we have:

$$I=\left.\frac{x^2}{n}\sin(nx) \right|_0^{2\pi}-\frac{2}{n}\int_0^{2\pi} x\sin(nx)\,dx$$

$$I=-\frac{2}{n}\int_0^{2\pi} x\sin(nx)\,dx$$

Using integration by parts again, where:

$$u=x\,\therefore\,du=dx$$

$$dv=\sin(x)\,dx\,\therefore\,v=-\frac{1}{n}\cos(nx)$$

Now we have:

$$I=\frac{2}{n}\left(\left.\frac{x}{n}\cos(nx) \right|_0^{2\pi}+\frac{1}{n}\int_0^{2\pi}\cos(nx)\,dx \right)$$

$$I=\frac{2}{n}\left(\frac{2\pi}{n}+\left.\frac{1}{n^2}\sin(nx) \right|_0^{2\pi} \right)$$

$$I=\frac{4\pi}{n^2}$$

Thus, we may state:

$$\int_0^{2\pi}x^2\cos(nx)\,dx=\frac{4\pi}{n^2}$$
 
Re: integral-03

perfect (Yes) you got it
 
Re: integral-03

Let's generalize a little...

We are given to evaluate:

$$I=\int_0^{2\pi}x^2\cos\left(nx+m\frac{\pi}{2} \right)\,dx$$ where (presumably) $$n\in\mathbb{N},\,m\in\{0,1,2,3\}$$

Using integration by parts, we may let:

$$u=x^2\,\therefore\,du=2x\,dx$$

$$dv=\cos\left(nx+m\frac{\pi}{2} \right)\,dx\,\therefore\,v=\frac{1}{n}\sin\left(nx+m\frac{\pi}{2} \right)$$

And we have:

$$I=\left.\frac{x^2}{n}\sin\left(nx+m\frac{\pi}{2} \right) \right|_0^{2\pi}-\frac{2}{n}\int_0^{2\pi} x\sin\left(nx+m\frac{\pi}{2} \right)\,dx$$

$$I=\frac{4\pi^2}{n}\sin\left(m\frac{\pi}{2} \right)-\frac{2}{n}\int_0^{2\pi} x\sin\left(nx+m\frac{\pi}{2} \right)\,dx$$

Using integration by parts again, where:

$$u=x\,\therefore\,du=dx$$

$$dv=\sin\left(nx+m\frac{\pi}{2} \right)\,dx\,\therefore\,v=-\frac{1}{n}\cos\left(nx+m\frac{\pi}{2} \right)$$

Now we have:

$$I=\frac{4\pi^2}{n}\sin\left(m\frac{\pi}{2} \right)+\frac{2}{n}\left( \left.\frac{x}{n}\cos\left(nx+m\frac{\pi}{2} \right) \right|_0^{2\pi}+\frac{1}{n}\int_0^{2\pi}\cos\left(nx+m\frac{\pi}{2} \right)\,dx \right)$$

$$I=\frac{4\pi^2}{n}\sin\left(m\frac{\pi}{2} \right)+ \frac{2}{n}\left(\frac{2\pi}{n}\cos\left(m \frac{\pi}{2} \right)+\left.\frac{1}{n^2}\sin\left(nx+m\frac{\pi}{2} \right) \right|_0^{2\pi} \right)$$

$$I=\frac{4\pi^2}{n}\sin\left(m\frac{\pi}{2} \right)+\frac{4\pi}{n^2}\cos\left(m\frac{\pi}{2} \right)$$

Thus, we may state:

$$m=0\implies\int_0^{2\pi}x^2\cos\left(nx \right)\,dx=\frac{4\pi}{n^2}$$

$$m=1\implies-\int_0^{2\pi}x^2\sin\left(nx \right)\,dx=\frac{4\pi^2}{n}$$

$$m=2\implies-\int_0^{2\pi}x^2\cos\left(nx \right)\,dx=-\frac{4\pi}{n^2}$$

$$m=3\implies\int_0^{2\pi}x^2\sin\left(nx \right)\,dx=-\frac{4\pi^2}{n}$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top