- 4,796
- 32
Can someone see how to do this? Here's what I have so far
Evaluate
\lim_{x\rightarrow 1}\frac{\sqrt[3]{x}-1}{x-1}
This is an indeterminate form \frac{0}{0}. Let's multiply by the conjugate 2 times.
\lim_{x\rightarrow 1}\frac{\sqrt[3]{x}-1}{x-1} = \lim_{x\rightarrow 1}\frac{\sqrt[3]{x}-1}{x-1} \frac{\sqrt[3]{x}+1}{\sqrt[3]{x}+1}\frac{\sqrt[3]{x}+1}{\sqrt[3]{x}+1} = \lim_{x\rightarrow 1}\frac{(x-1)+\sqrt[3]{x^2}-\sqrt[3]{x}}{(x-1)(\sqrt[3]{x}+1)^2}
I have tried going farther, setting y = \sqrt[3]{x} but it's not coming to anything.
Evaluate
\lim_{x\rightarrow 1}\frac{\sqrt[3]{x}-1}{x-1}
This is an indeterminate form \frac{0}{0}. Let's multiply by the conjugate 2 times.
\lim_{x\rightarrow 1}\frac{\sqrt[3]{x}-1}{x-1} = \lim_{x\rightarrow 1}\frac{\sqrt[3]{x}-1}{x-1} \frac{\sqrt[3]{x}+1}{\sqrt[3]{x}+1}\frac{\sqrt[3]{x}+1}{\sqrt[3]{x}+1} = \lim_{x\rightarrow 1}\frac{(x-1)+\sqrt[3]{x^2}-\sqrt[3]{x}}{(x-1)(\sqrt[3]{x}+1)^2}
I have tried going farther, setting y = \sqrt[3]{x} but it's not coming to anything.