Every convergent sequence has a monotoic subsequence

Mr Davis 97
Messages
1,461
Reaction score
44

Homework Statement


Prove that every convergent sequence has a monotone subsequence.

Homework Equations

The Attempt at a Solution


Define ##L## to be the limit of ##(a_n)##. Then every ##\epsilon##-ball about L contains infinitely many points. Note that ##(L, \infty)## or ##(-\infty, L)## (or both) has infinitely many elements. Suppose that ##(L, \infty)## has infinitely many elements. Choose ##n_1## such that ##a_{n_1} \in (L, \infty)##. Choose ##n_2 \in (L,a_{n_1})##. In general, choose ##n_{k+1}## such that ##a_{n_{k+1}} \in (L, a_{n_{k}})##. This assignment can always be made since there are infinitely many elements of ##(a_n)## in ##(L, a_{n_{k}})## to choose from such that ##a_{n_{k+1}} \in (L, a_{n_{k}})##.
 
Physics news on Phys.org
Do you have a question about this? I think it is a good start and only needs more supporting detailed statements to make it a rigorous proof.
 
FactChecker said:
Do you have a question about this? I think it is a good start and only needs more supporting detailed statements to make it a rigorous proof.
I guess my question then would be what supporting detailed statements do I need? As of now this is the best I can do, so I'm trying to see what I'm missing in terms of rigor.
 
Just add more description. The words do not cost you anything. What about the lower interval? Is the sequence increasing or decreasing? Monitone because?
 
Mr Davis 97 said:
Then every ##\epsilon##-ball about L contains infinitely many points.

It need not contain infinitely many distinct points. The sequence 2,2,2,2,... converges to 2.
 
  • Like
Likes FactChecker
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top