Every integer of the form n^4+4, with n>1, is composite?

Click For Summary

Homework Help Overview

The discussion revolves around the statement that every integer of the form n^4 + 4, where n > 1, is composite. Participants are exploring the implications of this assertion and examining its mathematical validity.

Discussion Character

  • Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Some participants present factorizations of n^4 + 4 and discuss the conditions under which these factors are greater than one. Others seek clarification on terminology, such as "double sharps," and how it relates to the mathematical expressions being discussed.

Discussion Status

The discussion includes various attempts to prove the composite nature of n^4 + 4 through factorization. Participants are actively engaging with each other's proofs and seeking to clarify terms and notation, indicating a collaborative exploration of the topic.

Contextual Notes

There is a focus on the mathematical expressions and their formatting, with some participants expressing confusion about specific terminology used in the discussion.

Math100
Messages
823
Reaction score
234
Homework Statement
Establish the following statement:
Every integer of the form n^4+4, with n>1, is composite.
Relevant Equations
None.
Proof: Suppose a=n^4+4 for some a##\in\mathbb{Z}## such that n>1.
Then we have a=n^4+4=(n^2-2n+2)(n^2+2n+2).
Note that n^2-2n+2>1 and n^2+2n+2>1 for n>1.
Therefore, every integer of the form n^4+4, with n>1, is composite.
 
  • Like
Likes   Reactions: fresh_42
Physics news on Phys.org
Math100 said:
Homework Statement:: Establish the following statement:
Every integer of the form n^4+4, with n>1, is composite.
Relevant Equations:: None.
Proof: Suppose a=n^4+4 for some a##\in\mathbb{Z}## such that n>1.
Then we have a=n^4+4=(n^2-2n+2)(n^2+2n+2).
Note that n^2-2n+2>1 and n^2+2n+2>1 for n>1.
Therefore, every integer of the form n^4+4, with n>1, is composite.
If you add double sharps then you get automatically the correct form:

Math100 said:
Homework Statement:: Establish the following statement:
Every integer of the form ##n^4+4##, with ##n>1##, is composite.

Proof: Suppose ##a=n^4+4## for some ##a \in\mathbb{Z}## such that ##n>1.##
Then we have ##a=n^4+4=(n^2-2n+2)(n^2+2n+2).##
Note that ##n^2-2n+2>1## and ##n^2+2n+2>1## for ##n>1.##
Therefore, every integer of the form ##n^4+4##, with ##n>1##, is composite.

Here is my version for comparison:

\begin{align*}
n^4+4&=n^4+4n^2+4 - 4n^2=(n^2+2)^2 -4n^2\\
&=((n^2+2)-2n)((n^2+2)+2n)
\end{align*}
Since ##n^2+2n+2 > n^2-2n+2>1## for all ##n>1##, ##n^4+4## has a non-trivial factorization, i.e. is composite.
 
  • Like
Likes   Reactions: nuuskur and Math100
fresh_42 said:
If you add double sharps then you get automatically the correct form:
Here is my version for comparison:

\begin{align*}
n^4+4&=n^4+4n^2+4 - 4n^2=(n^2+2)^2 -4n^2\\
&=((n^2+2)-2n)((n^2+2)+2n)
\end{align*}
Since ##n^2+2n+2 > n^2-2n+2>1## for all ##n>1##, ##n^4+4## has a non-trivial factorization, i.e. is composite.
Sorry, but I don't understand 'double sharps'. What does this mean?
 
Math100 said:
Sorry, but I don't understand 'double sharps'. What does this mean?
Type ## a= n^4+4 ## instead of a=n^4+4.
 
  • Like
Likes   Reactions: Math100
fresh_42 said:
Type ## n^4 ## instead of n^4.
Thank you, now I got it!
 

Similar threads

Replies
7
Views
4K
Replies
5
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
6K
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K