Exact Sequences - Lifting Homomorphisms - D&F Ch 10 - Theorem 28

Click For Summary

Discussion Overview

The discussion revolves around a specific step in the proof of Theorem 28 from Dummit and Foote's Chapter 10 on Exact Sequences, focusing on the lifting of homomorphisms. Participants are examining the implications of a statement made in the theorem regarding the relationship between certain homomorphisms and their compositions.

Discussion Character

  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant questions the validity of a statement in the theorem, suggesting that the implication $$ F = \psi' (F') $$ should lead to $$ \phi ( F (d) ) = \phi ( \psi' ( F' (d))) $$ rather than the statement provided in the theorem.
  • Another participant provides clarification, indicating that the correct interpretation involves recognizing that $$ \psi' (F') $$ acts on $$ d $$, leading to the conclusion that $$ F(d) = \psi(F' (d)) $$ through the definition of the maps involved.
  • A participant introduces a conceptual framework involving "layers" of modules and homomorphisms, emphasizing the need to consider the appropriate level of abstraction when interpreting the relationships between the elements involved.

Areas of Agreement / Disagreement

Participants express differing interpretations of the implications of the theorem's statement, indicating that there is no consensus on the correct understanding of the relationships between the homomorphisms involved.

Contextual Notes

Participants highlight the complexity of the relationships between modules and homomorphisms, suggesting that misunderstandings may arise from the multi-layered nature of the concepts discussed.

Who May Find This Useful

Readers interested in advanced algebra, particularly those studying exact sequences, projective, injective, and flat modules, may find the discussion relevant.

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Dummit and Foote, Chapter 10, Section 10.5, Exact Sequences - Projective, Injective and Flat Modules.

I need help with a minor step of D&F, Chapter 10, Theorem 28 on liftings of homomorphisms.

In the proof of the first part of the theorem (see image below) D&F make the following statement:

-------------------------------------------------------------------------------

Conversely, if F is in the image of $$ \psi'$$ then $$ F = \psi' (F') $$ for some $$ F' \in Hom_R (D, L) $$ and so $$ \phi ( F (d) )) = \phi ( \psi ( F' (d))) $$ for any $$d \in D$$. ...

----------------------------------------------------------------------------

My problem is that surely $$ F = \psi' (F') $$ implies that $$ \phi ( F (d) )) = \phi ( \psi' ( F' (d))) $$ and NOT $$ \phi ( F (d) )) = \phi ( \psi ( F' (d))) $$?

Hoping someone can help>

Theorem 28 and the first part of the proof read as follows:

https://www.physicsforums.com/attachments/2474

Peter

NOTE: This has also been posted on the Physics Forums in the forum Linear and Abstract Algebra.
 
Last edited:
Physics news on Phys.org
Peter said:
I am reading Dummit and Foote, Chapter 10, Section 10.5, Exact Sequences - Projective, Injective and Flat Modules.

I need help with a minor step of D&F, Chapter 10, Theorem 28 on liftings of homomorphisms.

In the proof of the first part of the theorem (see image below) D&F make the following statement:

-------------------------------------------------------------------------------

Conversely, if F is in the image of $$ \psi'$$ then $$ F = \psi' (F') $$ for some $$ F' \in Hom_R (D, L) $$ and so $$ \phi ( F (d) )) = \phi ( \psi ( F' (d))) $$ for any $$d \in D$$. ...

----------------------------------------------------------------------------

My problem is that surely $$ F = \psi' (F') $$ implies that $$ \phi ( F (d) )) = \phi ( \psi' ( F' (d))) $$ and NOT $$ \phi ( F (d) )) = \phi ( \psi ( F' (d))) $$?

Hoping someone can help>

Theorem 28 and the first part of the proof read as follows:

https://www.physicsforums.com/attachments/2474

Peter

NOTE: This has also been posted on the Physics Forums in the forum Linear and Abstract Algebra.

Just a note to say I received some excellent help from micromass on the Linear and Abstract Algebra forum of the Physics forum.

The solution/answer due to micromass was as follows:

micromass said:
If you simply substituted, then you would have gotten

F(d) = \psi^\prime(F^\prime)(d)

Thus $$\psi^\prime(F^\prime)$$ acts on $$d$$. You would not get F(d) = \psi^\prime(F^\prime(d))

Now, by definition, we have $$\psi^\prime(F^\prime) = \psi\circ F^\prime$$. Thus

F(d) = \psi^\prime(F^\prime)(d) = (\psi\circ F^\prime)(d) = \psi(F^\prime(d))
 
It's easy to get confused about these things:

There are 3 "layers" here:

Layer 1: individual $R$-modules.

Layer 2: homomorphisms (arrows) between different modules.

Layer 3: arrows between sets of arrows (the "primed" maps).

As such, when you see something like $f(-)$ ("$f$" of something), you have to check the "something" is on the right layer.

It may, or may not, be helpful to see the sequence (10) as being something like a cone, with the sequence:

$0 \to L \to M \to N$ at its "base", and $D$ at the apex.

So, for example, the map $\psi'$ is actually a triangular commutative diagram:

$\begin{array}[l]{ccc}D\\ \downarrow\rlap{f}&\stackrel{\psi'(f)}{\searrow}\\L&\stackrel{\psi}{\longrightarrow}&M \end{array}$

(my apologies for the poor drawing).
 
Deveno said:
It's easy to get confused about these things:

There are 3 "layers" here:

Layer 1: individual $R$-modules.

Layer 2: homomorphisms (arrows) between different modules.

Layer 3: arrows between sets of arrows (the "primed" maps).

As such, when you see something like $f(-)$ ("$f$" of something), you have to check the "something" is on the right layer.

It may, or may not, be helpful to see the sequence (10) as being something like a cone, with the sequence:

$0 \to L \to M \to N$ at its "base", and $D$ at the apex.

So, for example, the map $\psi'$ is actually a triangular commutative diagram:

$\begin{array}[l]{ccc}D\\ \downarrow\rlap{f}&\stackrel{\psi'(f)}{\searrow}\\L&\stackrel{\psi}{\longrightarrow}&M \end{array}$

(my apologies for the poor drawing).

Thanks Deveno, appreciate your thoughts ...

... Helpful in my attempt to understand projective, injective and flat modules ...

Peter
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
1
Views
2K