MHB Exact Sequences - Lifting Homomorphisms - D&F Ch 10 - Theorem 28

Click For Summary
The discussion revolves around a clarification needed in Dummit and Foote's Theorem 28 regarding the lifting of homomorphisms. The user questions a statement in the proof that seems to imply a misalignment in the application of homomorphisms, specifically between the maps $$\psi'$$ and $$\psi$$. A response from another user clarifies that the confusion arises from the different "layers" of modules and homomorphisms, emphasizing the importance of correctly identifying which map is being applied to which element. The explanation highlights the structure of the relationships between the modules involved, aiding in understanding the theorem's proof. Overall, the discussion enhances comprehension of the complexities in exact sequences and module theory.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Dummit and Foote, Chapter 10, Section 10.5, Exact Sequences - Projective, Injective and Flat Modules.

I need help with a minor step of D&F, Chapter 10, Theorem 28 on liftings of homomorphisms.

In the proof of the first part of the theorem (see image below) D&F make the following statement:

-------------------------------------------------------------------------------

Conversely, if F is in the image of $$ \psi'$$ then $$ F = \psi' (F') $$ for some $$ F' \in Hom_R (D, L) $$ and so $$ \phi ( F (d) )) = \phi ( \psi ( F' (d))) $$ for any $$d \in D$$. ...

----------------------------------------------------------------------------

My problem is that surely $$ F = \psi' (F') $$ implies that $$ \phi ( F (d) )) = \phi ( \psi' ( F' (d))) $$ and NOT $$ \phi ( F (d) )) = \phi ( \psi ( F' (d))) $$?

Hoping someone can help>

Theorem 28 and the first part of the proof read as follows:

https://www.physicsforums.com/attachments/2474

Peter

NOTE: This has also been posted on the Physics Forums in the forum Linear and Abstract Algebra.
 
Last edited:
Physics news on Phys.org
Peter said:
I am reading Dummit and Foote, Chapter 10, Section 10.5, Exact Sequences - Projective, Injective and Flat Modules.

I need help with a minor step of D&F, Chapter 10, Theorem 28 on liftings of homomorphisms.

In the proof of the first part of the theorem (see image below) D&F make the following statement:

-------------------------------------------------------------------------------

Conversely, if F is in the image of $$ \psi'$$ then $$ F = \psi' (F') $$ for some $$ F' \in Hom_R (D, L) $$ and so $$ \phi ( F (d) )) = \phi ( \psi ( F' (d))) $$ for any $$d \in D$$. ...

----------------------------------------------------------------------------

My problem is that surely $$ F = \psi' (F') $$ implies that $$ \phi ( F (d) )) = \phi ( \psi' ( F' (d))) $$ and NOT $$ \phi ( F (d) )) = \phi ( \psi ( F' (d))) $$?

Hoping someone can help>

Theorem 28 and the first part of the proof read as follows:

https://www.physicsforums.com/attachments/2474

Peter

NOTE: This has also been posted on the Physics Forums in the forum Linear and Abstract Algebra.

Just a note to say I received some excellent help from micromass on the Linear and Abstract Algebra forum of the Physics forum.

The solution/answer due to micromass was as follows:

micromass said:
If you simply substituted, then you would have gotten

F(d) = \psi^\prime(F^\prime)(d)

Thus $$\psi^\prime(F^\prime)$$ acts on $$d$$. You would not get F(d) = \psi^\prime(F^\prime(d))

Now, by definition, we have $$\psi^\prime(F^\prime) = \psi\circ F^\prime$$. Thus

F(d) = \psi^\prime(F^\prime)(d) = (\psi\circ F^\prime)(d) = \psi(F^\prime(d))
 
It's easy to get confused about these things:

There are 3 "layers" here:

Layer 1: individual $R$-modules.

Layer 2: homomorphisms (arrows) between different modules.

Layer 3: arrows between sets of arrows (the "primed" maps).

As such, when you see something like $f(-)$ ("$f$" of something), you have to check the "something" is on the right layer.

It may, or may not, be helpful to see the sequence (10) as being something like a cone, with the sequence:

$0 \to L \to M \to N$ at its "base", and $D$ at the apex.

So, for example, the map $\psi'$ is actually a triangular commutative diagram:

$\begin{array}[l]{ccc}D\\ \downarrow\rlap{f}&\stackrel{\psi'(f)}{\searrow}\\L&\stackrel{\psi}{\longrightarrow}&M \end{array}$

(my apologies for the poor drawing).
 
Deveno said:
It's easy to get confused about these things:

There are 3 "layers" here:

Layer 1: individual $R$-modules.

Layer 2: homomorphisms (arrows) between different modules.

Layer 3: arrows between sets of arrows (the "primed" maps).

As such, when you see something like $f(-)$ ("$f$" of something), you have to check the "something" is on the right layer.

It may, or may not, be helpful to see the sequence (10) as being something like a cone, with the sequence:

$0 \to L \to M \to N$ at its "base", and $D$ at the apex.

So, for example, the map $\psi'$ is actually a triangular commutative diagram:

$\begin{array}[l]{ccc}D\\ \downarrow\rlap{f}&\stackrel{\psi'(f)}{\searrow}\\L&\stackrel{\psi}{\longrightarrow}&M \end{array}$

(my apologies for the poor drawing).

Thanks Deveno, appreciate your thoughts ...

... Helpful in my attempt to understand projective, injective and flat modules ...

Peter
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
1
Views
2K