MHB Exact Sequences - Lifting Homomorphisms - D&F Ch 10 - Theorem 28

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Dummit and Foote, Chapter 10, Section 10.5, Exact Sequences - Projective, Injective and Flat Modules.

I need help with a minor step of D&F, Chapter 10, Theorem 28 on liftings of homomorphisms.

In the proof of the first part of the theorem (see image below) D&F make the following statement:

-------------------------------------------------------------------------------

Conversely, if F is in the image of $$ \psi'$$ then $$ F = \psi' (F') $$ for some $$ F' \in Hom_R (D, L) $$ and so $$ \phi ( F (d) )) = \phi ( \psi ( F' (d))) $$ for any $$d \in D$$. ...

----------------------------------------------------------------------------

My problem is that surely $$ F = \psi' (F') $$ implies that $$ \phi ( F (d) )) = \phi ( \psi' ( F' (d))) $$ and NOT $$ \phi ( F (d) )) = \phi ( \psi ( F' (d))) $$?

Hoping someone can help>

Theorem 28 and the first part of the proof read as follows:

https://www.physicsforums.com/attachments/2474

Peter

NOTE: This has also been posted on the Physics Forums in the forum Linear and Abstract Algebra.
 
Last edited:
Physics news on Phys.org
Peter said:
I am reading Dummit and Foote, Chapter 10, Section 10.5, Exact Sequences - Projective, Injective and Flat Modules.

I need help with a minor step of D&F, Chapter 10, Theorem 28 on liftings of homomorphisms.

In the proof of the first part of the theorem (see image below) D&F make the following statement:

-------------------------------------------------------------------------------

Conversely, if F is in the image of $$ \psi'$$ then $$ F = \psi' (F') $$ for some $$ F' \in Hom_R (D, L) $$ and so $$ \phi ( F (d) )) = \phi ( \psi ( F' (d))) $$ for any $$d \in D$$. ...

----------------------------------------------------------------------------

My problem is that surely $$ F = \psi' (F') $$ implies that $$ \phi ( F (d) )) = \phi ( \psi' ( F' (d))) $$ and NOT $$ \phi ( F (d) )) = \phi ( \psi ( F' (d))) $$?

Hoping someone can help>

Theorem 28 and the first part of the proof read as follows:

https://www.physicsforums.com/attachments/2474

Peter

NOTE: This has also been posted on the Physics Forums in the forum Linear and Abstract Algebra.

Just a note to say I received some excellent help from micromass on the Linear and Abstract Algebra forum of the Physics forum.

The solution/answer due to micromass was as follows:

micromass said:
If you simply substituted, then you would have gotten

F(d) = \psi^\prime(F^\prime)(d)

Thus $$\psi^\prime(F^\prime)$$ acts on $$d$$. You would not get F(d) = \psi^\prime(F^\prime(d))

Now, by definition, we have $$\psi^\prime(F^\prime) = \psi\circ F^\prime$$. Thus

F(d) = \psi^\prime(F^\prime)(d) = (\psi\circ F^\prime)(d) = \psi(F^\prime(d))
 
It's easy to get confused about these things:

There are 3 "layers" here:

Layer 1: individual $R$-modules.

Layer 2: homomorphisms (arrows) between different modules.

Layer 3: arrows between sets of arrows (the "primed" maps).

As such, when you see something like $f(-)$ ("$f$" of something), you have to check the "something" is on the right layer.

It may, or may not, be helpful to see the sequence (10) as being something like a cone, with the sequence:

$0 \to L \to M \to N$ at its "base", and $D$ at the apex.

So, for example, the map $\psi'$ is actually a triangular commutative diagram:

$\begin{array}[l]{ccc}D\\ \downarrow\rlap{f}&\stackrel{\psi'(f)}{\searrow}\\L&\stackrel{\psi}{\longrightarrow}&M \end{array}$

(my apologies for the poor drawing).
 
Deveno said:
It's easy to get confused about these things:

There are 3 "layers" here:

Layer 1: individual $R$-modules.

Layer 2: homomorphisms (arrows) between different modules.

Layer 3: arrows between sets of arrows (the "primed" maps).

As such, when you see something like $f(-)$ ("$f$" of something), you have to check the "something" is on the right layer.

It may, or may not, be helpful to see the sequence (10) as being something like a cone, with the sequence:

$0 \to L \to M \to N$ at its "base", and $D$ at the apex.

So, for example, the map $\psi'$ is actually a triangular commutative diagram:

$\begin{array}[l]{ccc}D\\ \downarrow\rlap{f}&\stackrel{\psi'(f)}{\searrow}\\L&\stackrel{\psi}{\longrightarrow}&M \end{array}$

(my apologies for the poor drawing).

Thanks Deveno, appreciate your thoughts ...

... Helpful in my attempt to understand projective, injective and flat modules ...

Peter
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top