MHB Exact Sequences - Lifting Homomorphisms - D&F Ch 10 - Theorem 28

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Dummit and Foote, Chapter 10, Section 10.5, Exact Sequences - Projective, Injective and Flat Modules.

I need help with a minor step of D&F, Chapter 10, Theorem 28 on liftings of homomorphisms.

In the proof of the first part of the theorem (see image below) D&F make the following statement:

-------------------------------------------------------------------------------

Conversely, if F is in the image of $$ \psi'$$ then $$ F = \psi' (F') $$ for some $$ F' \in Hom_R (D, L) $$ and so $$ \phi ( F (d) )) = \phi ( \psi ( F' (d))) $$ for any $$d \in D$$. ...

----------------------------------------------------------------------------

My problem is that surely $$ F = \psi' (F') $$ implies that $$ \phi ( F (d) )) = \phi ( \psi' ( F' (d))) $$ and NOT $$ \phi ( F (d) )) = \phi ( \psi ( F' (d))) $$?

Hoping someone can help>

Theorem 28 and the first part of the proof read as follows:

https://www.physicsforums.com/attachments/2474

Peter

NOTE: This has also been posted on the Physics Forums in the forum Linear and Abstract Algebra.
 
Last edited:
Physics news on Phys.org
Peter said:
I am reading Dummit and Foote, Chapter 10, Section 10.5, Exact Sequences - Projective, Injective and Flat Modules.

I need help with a minor step of D&F, Chapter 10, Theorem 28 on liftings of homomorphisms.

In the proof of the first part of the theorem (see image below) D&F make the following statement:

-------------------------------------------------------------------------------

Conversely, if F is in the image of $$ \psi'$$ then $$ F = \psi' (F') $$ for some $$ F' \in Hom_R (D, L) $$ and so $$ \phi ( F (d) )) = \phi ( \psi ( F' (d))) $$ for any $$d \in D$$. ...

----------------------------------------------------------------------------

My problem is that surely $$ F = \psi' (F') $$ implies that $$ \phi ( F (d) )) = \phi ( \psi' ( F' (d))) $$ and NOT $$ \phi ( F (d) )) = \phi ( \psi ( F' (d))) $$?

Hoping someone can help>

Theorem 28 and the first part of the proof read as follows:

https://www.physicsforums.com/attachments/2474

Peter

NOTE: This has also been posted on the Physics Forums in the forum Linear and Abstract Algebra.

Just a note to say I received some excellent help from micromass on the Linear and Abstract Algebra forum of the Physics forum.

The solution/answer due to micromass was as follows:

micromass said:
If you simply substituted, then you would have gotten

F(d) = \psi^\prime(F^\prime)(d)

Thus $$\psi^\prime(F^\prime)$$ acts on $$d$$. You would not get F(d) = \psi^\prime(F^\prime(d))

Now, by definition, we have $$\psi^\prime(F^\prime) = \psi\circ F^\prime$$. Thus

F(d) = \psi^\prime(F^\prime)(d) = (\psi\circ F^\prime)(d) = \psi(F^\prime(d))
 
It's easy to get confused about these things:

There are 3 "layers" here:

Layer 1: individual $R$-modules.

Layer 2: homomorphisms (arrows) between different modules.

Layer 3: arrows between sets of arrows (the "primed" maps).

As such, when you see something like $f(-)$ ("$f$" of something), you have to check the "something" is on the right layer.

It may, or may not, be helpful to see the sequence (10) as being something like a cone, with the sequence:

$0 \to L \to M \to N$ at its "base", and $D$ at the apex.

So, for example, the map $\psi'$ is actually a triangular commutative diagram:

$\begin{array}[l]{ccc}D\\ \downarrow\rlap{f}&\stackrel{\psi'(f)}{\searrow}\\L&\stackrel{\psi}{\longrightarrow}&M \end{array}$

(my apologies for the poor drawing).
 
Deveno said:
It's easy to get confused about these things:

There are 3 "layers" here:

Layer 1: individual $R$-modules.

Layer 2: homomorphisms (arrows) between different modules.

Layer 3: arrows between sets of arrows (the "primed" maps).

As such, when you see something like $f(-)$ ("$f$" of something), you have to check the "something" is on the right layer.

It may, or may not, be helpful to see the sequence (10) as being something like a cone, with the sequence:

$0 \to L \to M \to N$ at its "base", and $D$ at the apex.

So, for example, the map $\psi'$ is actually a triangular commutative diagram:

$\begin{array}[l]{ccc}D\\ \downarrow\rlap{f}&\stackrel{\psi'(f)}{\searrow}\\L&\stackrel{\psi}{\longrightarrow}&M \end{array}$

(my apologies for the poor drawing).

Thanks Deveno, appreciate your thoughts ...

... Helpful in my attempt to understand projective, injective and flat modules ...

Peter
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top