Thanks, that makes sense. In a "perfect" space, with no holes, every cycle would be a boundary, and so the chain groups would form an exact sequence, and the homolgy would be trivial. The homology groups tell us how the space deviates from this, ie, what kinds of holes it has.
But I still don't understand where the actual, perfect exact sequences come into things. For example, take the Mayer Vietoris sequence. To derive this, you form the short exact sequence of chain groups.
0 \rightarrow C_n(A \cap B) \rightarrow C_n(A) \oplus C_n(B) \rightarrow C_n (A+B) \rightarrow 0
Where it can be shown under nice circumstances that the homolgy induced by C_n(A+B) (sums of chains entirely in A or entirely in B) is isomorphic to the homology of their union. Then the snake lemma says this extends to a long exact sequence of homology groups:
...\rightarrow H_{n+1}(A \cup B)\rightarrow H_n(A \cap B) \rightarrow H_n(A) \oplus H_n(B) \rightarrow H_n (A \cup B) \rightarrow H_{n-1}(A \cap B) \rightarrow ...
What does this mean? I know how to use it to compute things, and it is very useful for that. But I have no idea what this sequence tells me about the corresponding groups, let alone the corresponding spaces. Like I said, this is a very vauge question, and probably a difficult one to answer. It's probably just something you have to get familiar with, but I'm just looking for a head start in understanding it.