silverdiesel
- 64
- 0
My professor posed a brain teaser question today, and I can't get it out of my mind. I was hoping the forum can help me make sense of it.
Area under 1/x = infinity:
A = \int_{1}^{\infty} (1/x)dx
A = \lim_{t\rightarrow \infty} \int_{1}^{t} (1/x)dx
A = \lim_{t\rightarrow \infty} \ln t - \ln 1
A = \infty
but the volume of 1/x rotated around the x-axis is equal to pi
V = \pi \int_{1}^{\infty} (1/x)^2dx
V = \pi \lim_{t\rightarrow \infty} \int_{1}^{t} (1/x)^2dx
= \pi \lim_{t\rightarrow \infty} (-1/t + 1/1)
= \pi (1)
How can this be true?
Area under 1/x = infinity:
A = \int_{1}^{\infty} (1/x)dx
A = \lim_{t\rightarrow \infty} \int_{1}^{t} (1/x)dx
A = \lim_{t\rightarrow \infty} \ln t - \ln 1
A = \infty
but the volume of 1/x rotated around the x-axis is equal to pi
V = \pi \int_{1}^{\infty} (1/x)^2dx
V = \pi \lim_{t\rightarrow \infty} \int_{1}^{t} (1/x)^2dx
= \pi \lim_{t\rightarrow \infty} (-1/t + 1/1)
= \pi (1)
How can this be true?
Last edited: