DrDu said:
You don't really expect an answer on that question, throwing in just some abbreviations without context, do you?
Some translations:
D/A: donor/acceptor
P3HT: a thiophene polymer, the electron donor in question
PCBM: a fullerene-based electron acceptor material
BHJ OSC: bulk heterojunction organic solar cell
Now that that's out of the way, it seems like you're (referring to Physicist3) conflating a few terms here. The "exciton diffusion length," as measured by experiment, is a "typical" diffusion length of an exciton in pure P3HT. The distance that each individual exciton diffuses will follow a probability distribution, so that one can't predict ahead of time how far one particular exciton will diffuse before quenching. Bulk heterojunction cells typically capture the "long tail" of this distribution. For P3HT, the typical diffusion length is around 3-5 nm, but some excitons diffuse further. Since a P3HT:PCBM cell usually phase separates with domains on the order of 10-15 nm, some of the excitons generated in a P3HT domain are able to diffuse to a PCBM domain, where electrons can be collected by an electrode to do meaningful work.
To answer your question, then, I've never seen a study where the typical exciton diffusion length in P3HT is dependent on BHJ device fabrication. It's true that the measured diffusion length in pure P3HT varies a lot from paper to paper (I've seen anywhere from 1 nm to 10 nm), but as far as I'm aware, the main limit to efficiency in BHJ solar cells is the length scale of the phase separated donor/acceptor pairs.
This paper:
http://pubs.rsc.org/en/content/articlehtml/2011/nr/c0nr01002b
suggests that part of the success observed in P3HT:PCBM BHJ's may be attributed to an anomalously large charge transfer radius between the two phases, which is kind of an interesting idea. Basically, instead of the whole exciton (electron-hole pair) diffusing from its origin to the donor/acceptor interface, the exciton delocalizes over a large distance; i.e., the electron-hole separation increases. Still, however, I'm not sure the fabrication procedure would affect the size of the charge transfer radius. I'm inclined to think it's more an intrinsic property of the material.