MHB Existence of a Basis of a Vector Space

toni07
Messages
24
Reaction score
0
Let n be a positive integer, and for each $j = 1,..., n$ define the polynomial $f_j(x)$ by f_j(x) = $\prod_{i=1,i \ne j}^n(x-a_i)$

The factor $x−a_j$ is omitted, so $f_j$ has degree n-1

a) Prove that the set $f_1(x),...,f_n(x)$ is a basis of the vector space of all polynomials of degree ≤ n - 1 in x with coefficients in F.

b) Let $b_1,...,b_n$ in F be arbitrary (not necessarily distinct). Prove that there exists a unique polynomial g(x) of degree ≤ n - 1 in x with coefficients in F.

I don't know how to go about this question. Any help would be appreciated.
 
Physics news on Phys.org
Re: Assume that the field F has at least n distinct elements $a_1, …, a_n$

Since the set $\{f_1,\dots,f_n\}$ has $n$ elements, and $\text{dim}(P_{n-1}) = n$, it suffices to prove this set is linearly independent to show it is a basis.

So suppose we have $c_1,\dots,c_n \in F$ with:

$g = c_1f_1 + \cdots + c_nf_n = 0$ (the 0-polynomial).

Since for ALL $a \in F$, $g(a) = 0$, in particular, we must have $g(a_1) = 0$.

Now $a_1$ is a root of $f_2,\dots,f_n$, so:

$0 = g(a_1) = c_1f_1(a_1) + c_2f_2(a_2) + \cdots + c_nf_n(a_n)$

$= c_1f_1(a_1) + 0 + \cdots + 0 = c_1f(a_1)$.

Since the $a_i$ are distinct, we have that $f(a_1)$ is the product of $n-1$ non-zero elements of $F$, and thus is non-zero. Hence it must be the case that $c_1 = 0$.

By similarly considering $g(a_i)$ for each $i$, we see that all the $c_i = 0$, which establishes linear independence of the $f_i$.

Something is missing from your statement of part b)...
 
Re: Assume that the field F has at least n distinct elements $a_1, …, a_n$

Deveno said:
Since the set $\{f_1,\dots,f_n\}$ has $n$ elements, and $\text{dim}(P_{n-1}) = n$, it suffices to prove this set is linearly independent to show it is a basis.

So suppose we have $c_1,\dots,c_n \in F$ with:

$g = c_1f_1 + \cdots + c_nf_n = 0$ (the 0-polynomial).

Since for ALL $a \in F$, $g(a) = 0$, in particular, we must have $g(a_1) = 0$.

Now $a_1$ is a root of $f_2,\dots,f_n$, so:

$0 = g(a_1) = c_1f_1(a_1) + c_2f_2(a_2) + \cdots + c_nf_n(a_n)$

$= c_1f_1(a_1) + 0 + \cdots + 0 = c_1f(a_1)$.

Since the $a_i$ are distinct, we have that $f(a_1)$ is the product of $n-1$ non-zero elements of $F$, and thus is non-zero. Hence it must be the case that $c_1 = 0$.

By similarly considering $g(a_i)$ for each $i$, we see that all the $c_i = 0$, which establishes linear independence of the $f_i$.

Something is missing from your statement of part b)...

Sorry, I didn't realize I omitted the last part.
b) Let $b_1,...,b_n$ in F be arbitrary (not necessarily distinct). Prove that there exists a unique polynomial g(x) of degree ≤ n - 1 in x with coefficients in F such that $g(a_i) = b_i$ for i = $1,..., n$ .
 
Re: Assume that the field F has at least n distinct elements $a_1, …, a_n$

Suppose the $f_i$ are as in part (a).

We know that $f_i(a_i) \neq 0$, so because we are in a field $f_i(a_i)^{-1}$ exists.

Define:

$\displaystyle g(x) = \sum_{j = 1}^n \frac{b_j}{f_i(a_j)}f_j(x)$

Then $\displaystyle g(a_i) = \frac{b_i}{f_i(a_i)}f_i(a_i) = b_i$

(all the non-$i$ terms are 0).

This shows existence...can you show uniqueness?

(hint: what does being a basis mean in terms of the coefficients of the $f_i$?)
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top