^It does not matter what variables are used.
In general h is not zero that is an uninteresting case.
These all mean exactly the same thing.
<br />
\sin(x+h) \sim \sum^\infty_{k=0} <br />
\frac{h^k}{k!} \sin^{(k)}(x)=\sum^\infty_{k=0} <br />
\frac{h^k}{k!} \sin(x+k \, \pi/2)=\sum^\infty_{k=0} <br />
\frac{h^k}{k!} (\sin(x)\cos(k \, \pi/2)+\cos(x)\sin(k \, \pi/2)) \\<br />
\sin(a+b) \sim \sum^\infty_{n=0} <br />
\frac{b^n}{n!} \sin^{(n)}(a)=\sum^\infty_{n=0} <br />
\frac{b^n}{n!} \sin(a+n \, \pi/2)=\sum^\infty_{n=0} <br />
\frac{b^n}{n!} (\sin(a)\cos(n \, \pi/2)+\cos(a)\sin(n \, \pi/2)) \\<br />
\sin(\mathrm{rock}+\mathrm{paper}) \sim \sum^\infty_{\mathrm{scissors}=0} <br />
\frac{\mathrm{paper}^\mathrm{scissors}}{\mathrm{scissors}!} \sin^{(\mathrm{scissors})}(\mathrm{rock})=<br />
\sum^\infty_{\mathrm{scissors}=0} <br />
\frac{\mathrm{paper}^\mathrm{scissors}}{\mathrm{scissors}!} \sin(\mathrm{rock}+\mathrm{scissors} \, \pi/2)=\sum^\infty_{\mathrm{scissors}=0} <br />
\frac{\mathrm{paper}^\mathrm{scissors}}{\mathrm{scissors}!} (\sin(\mathrm{rock})\cos(\mathrm{scissors} \, \pi/2)+\cos(\mathrm{rock})\sin(\mathrm{scissors} \, \pi/2))
In the given exercise we can take
x=rock+paper
y=paper
pi/4=rock
k=scissors
to give
<br />
\sin(x)=\sin(\pi/4+y) \sim \sum^\infty_{k=0} <br />
\frac{y^k}{k!} \sin^{(k)}(\pi/4)=\sum^\infty_{k=0} <br />
\frac{y^k}{y!} \sin(\pi/4+k \, \pi/2)=\sum^\infty_{k=0} <br />
\frac{y^k}{k!} (\sin(\pi/4)\cos(k \, \pi/2)+\cos(\pi/4)\sin(k \, \pi/2))