Pietair
- 57
- 0
Homework Statement
Show that the expectation operator E() is a linear operator, or, implying:
E(a\bar{x}+b\bar{y})=aE(\bar{x})+bE(\bar{y})
Homework Equations
E(\bar{x})=\int_{-\infty}^{+\infty}xf_{\bar{x}}(x)dx
With f_{\bar{x}} the probability density function of random variable x.
The Attempt at a Solution
aE(\bar{x})=a\int_{-\infty}^{+\infty}xf_{\bar{x}}(x)dx and:
bE(\bar{y})=b\int_{-\infty}^{+\infty}yf_{\bar{y}}(y)dy
Introducing a new random variable:
\bar{v}=a\bar{x}+b\bar{y}
Then:
E(\bar{v})=E(a\bar{x}+b\bar{y})=\int_{-\infty}^{+\infty}vf_{\bar{v}}(v)dv=\int_{-\infty}^{+\infty}(ax+by)f_{\bar{v}}(v)dv
And accordingly:
E(a\bar{x}+b\bar{y})=\int_{-\infty}^{+\infty}(ax+by)f_{\bar{v}}(v)dv=a\int_{-\infty}^{+\infty}xf_{\bar{v}}(v)dv+b\int_{-\infty}^{+\infty}yf_{\bar{v}}(v)dv
So what remains to proof is that:
a\int_{-\infty}^{+\infty}xf_{\bar{v}}(v)dv+b\int_{-\infty}^{+\infty}yf_{\bar{v}}(v)dv=a\int_{-\infty}^{+\infty}xf_{\bar{x}}(x)dx+b\int_{-\infty}^{+\infty}yf_{\bar{y}}(y)dy
And now I am stuck... I don't know how I can relate the p.d.f. of random variable v to the p.d.f.'s of random variables x and y.
Thank you in advance!