Expectation value in coherent state

spaghetti3451
Messages
1,311
Reaction score
31

Homework Statement



In a coherent state ##|\alpha\rangle##, letting ##P(n)## denote the probability of finding ##n^{\text{th}}## harmomic oscillator state. Show that

$$\displaystyle{\langle\hat{n}\rangle \equiv \sum\limits_{n}n\ P(n)=|\alpha|^{2}}$$

Homework Equations



The Attempt at a Solution



A coherent state ##\alpha\rangle## is defined as ##D(\alpha)|\alpha\rangle = \exp(\alpha a^{\dagger}-\alpha^{*}a)|\alpha\rangle## so that

$$\displaystyle{\langle\hat{n}\rangle \equiv \sum\limits_{n}n\ P(n)= \sum\limits_{n}n\ |\langle n|\alpha\rangle|^{2}}$$

Therefore, it is prudent to evaluate ##|\alpha\rangle## in terms of ##|n\rangle## as follows:

##\displaystyle{|\alpha\rangle = \exp\ (\alpha a^{\dagger}-\alpha^{*}a)|0\rangle}##

##\displaystyle{|\alpha\rangle = \exp (-|\alpha|^{2}/2) \exp\ (-\alpha^{*}a) \exp\ (\alpha a^{\dagger})|0\rangle}##

##\displaystyle{|\alpha\rangle = \exp (-|\alpha|^{2}/2) \exp\ (-\alpha^{*}a) \bigg(\sum\limits_{n'=0}^{\infty} \frac{\alpha^{n'}}{n'!}(a^{\dagger})^{n'}|0\rangle}\bigg)##

##\displaystyle{|\alpha\rangle = \exp (-|\alpha|^{2}/2) \exp\ (-\alpha^{*}a) \bigg(\sum\limits_{n'=0}^{\infty} \frac{\alpha^{n'}}{\sqrt{n'!}}|n'\rangle}\bigg)##

##\displaystyle{\langle n|\alpha\rangle = \langle n|\left(\exp (-|\alpha|^{2}/2) \exp\ (-\alpha^{*}a) \sum\limits_{n'=0}^{\infty} \frac{\alpha^{n'}}{\sqrt{n'!}}\right) |n'\rangle}.##

Am I correct so far?
 
Physics news on Phys.org
failexam said:
##\displaystyle{|\alpha\rangle = \exp\ (\alpha a^{\dagger}-\alpha^{*}a)|0\rangle}##

##\displaystyle{|\alpha\rangle = \exp (-|\alpha|^{2}/2) \exp\ (-\alpha^{*}a) \exp\ (\alpha a^{\dagger})|0\rangle}##
OK, so you're using the Zassenhaus formula in this step, but note that the formula can be written in 2 ways. I.e., you could put ##\exp(-\alpha^*a)## on the right and change the sign of the ##|\alpha|^2## exponent. Then, what is $$\exp(-\alpha^*a)|0\rangle $$ ?
 
strangerep said:
OK, so you're using the Zassenhaus formula in this step, but note that the formula can be written in 2 ways. I.e., you could put ##\exp(-\alpha^*a)## on the right and change the sign of the ##|\alpha|^2## exponent. Then, what is $$\exp(-\alpha^*a)|0\rangle $$ ?

##\displaystyle{\exp(-\alpha^*a)|0\rangle=|0\rangle}##, but then, using Baker-Campbell-Hausdorff, I get

##\displaystyle{\exp(\alpha a^{\dagger}-\alpha^{*}a)}|0\rangle = \exp(\alpha a^{\dagger}) \exp(-\alpha^{*}a) \exp\left(\frac{1}{2}[\alpha a^{\dagger},-\alpha^{*}a]\right)|0\rangle##

##= \exp(\alpha a^{\dagger}) \exp(-\alpha^{*}a) \exp\left(-\frac{1}{2}|\alpha|^{2}[a^{\dagger},a]\right)|0\rangle##

##= \exp(\alpha a^{\dagger}) \exp(-\alpha^{*}a) \exp\left(\frac{1}{2}|\alpha|^{2}\right)|0\rangle##

##= \exp\left(\frac{1}{2}|\alpha|^{2}\right) \exp(\alpha a^{\dagger}) \exp(-\alpha^{*}a) |0\rangle##

##= \exp\left(\frac{1}{2}|\alpha|^{2}\right) \exp(\alpha a^{\dagger}) |0\rangle,##

when, in fact, I should have

##= \exp\left(-\frac{1}{2}|\alpha|^{2}\right) \exp(\alpha a^{\dagger}) |0\rangle.##

What am I doing wrong here?
 
failexam said:
##\displaystyle{\exp(\alpha a^{\dagger}-\alpha^{*}a)}|0\rangle = \exp(\alpha a^{\dagger}) \exp(-\alpha^{*}a) \exp\left(\frac{1}{2}[\alpha a^{\dagger},-\alpha^{*}a]\right)|0\rangle##
Check the Zassenhaus formula. Shouldn't the 3rd exponent have a minus sign?

(BTW, you can shorten your latex a bit by using just double-dollar, instead of double-hash and \displaystyle.}
 
strangerep said:
Check the Zassenhaus formula. Shouldn't the 3rd exponent have a minus sign?

(BTW, you can shorten your latex a bit by using just double-dollar, instead of double-hash and \displaystyle.}

Why use the Zassenhaus formula and not the BCH formula?
 
failexam said:
Why use the Zassenhaus formula and not the BCH formula?
Look up the "Zassenhaus formula" on Wikipedia. It is simply a special case of BCH.
 
But then the BCH formula says that

$$\exp(A+B)=\exp(A)\exp(B)\exp\left(\frac{1}{2}[A,B]\right)$$

and the Zassenhaus formula says that

$$\exp(t(X+Y))=\exp(tX)\exp(tY)\exp\left(-\frac{t^{2}}{2}[X,Y]\right)$$.

I don't see how the Zassenhaus formula is a special case of the BCH formula, if ##A=tX## and ##B=tY##.
 
failexam said:
But then the BCH formula says that
$$\exp(A+B)=\exp(A)\exp(B)\exp\left(\frac{1}{2}[A,B]\right)$$
Where are you getting your BCH formula from? There's another form of BCH which looks like this:
$$e^A e^B ~=~ e^{A+B+[A,B]/2 ~+~ \dots} ~.$$
 
strangerep said:
Where are you getting your BCH formula from? There's another form of BCH which looks like this:
$$e^A e^B ~=~ e^{A+B+[A,B]/2 ~+~ \dots} ~.$$

Sorry, my bad!

How do you prove the Zassenhaus formula from the BCH formula?
 
  • #11
failexam said:
Wait. I don't need to see the proof.
Actually, I think you do, at least for the current simple case. In fact that's trivial because we're only dealing here with the case where ##[A,B]## is a c-number (meaning it commutes with everything). So you can factor it out and transfer it across to the other side of the equation.

But, I am not really sure why the Zassenhaus formula can be used in this case. After all, we can't be sure if ##t=\alpha## or if ##t=-\alpha^{*}## in https://en.wikipedia.org/wiki/Baker–Campbell–Hausdorff_formula#The_Zassenhaus_formula.
The ##t## is a red herring. Just think in terms of A and B (i.e., put ##t=1## in those Wiki formulas). Then put ##A = \alpha a^\dagger##, etc.
 
  • #12
Ah, I see! So, I have

##\displaystyle{|\alpha\rangle = \exp\left(-\frac{1}{2}|\alpha|^{2}\right)\exp\left(\alpha a^{\dagger}\right)\exp\left(-\alpha^{*}a\right)|0\rangle}##

##\displaystyle{|\alpha\rangle = \exp\left(-\frac{1}{2}|\alpha|^{2}\right)\exp\left(\alpha a^{\dagger}\right)|0\rangle}##

##\displaystyle{|\alpha\rangle = \exp (-|\alpha|^{2}/2) \bigg(\sum\limits_{n'=0}^{\infty} \frac{\alpha^{n'}}{n'!}(a^{\dagger})^{n'}|0\rangle}\bigg)##

##\displaystyle{|\alpha\rangle = \exp (-|\alpha|^{2}/2) \bigg(\sum\limits_{n'=0}^{\infty} \frac{\alpha^{n'}}{\sqrt{n'!}}|n'\rangle}\bigg)##

##\displaystyle{\langle n|\alpha\rangle = \langle n|\left(\exp (-|\alpha|^{2}/2) \sum\limits_{n'=0}^{\infty} \frac{\alpha^{n'}}{\sqrt{n'!}} |n'\rangle\right)}##

##\displaystyle{= \left(\exp (-|\alpha|^{2}/2) \sum\limits_{n'=0}^{\infty} \frac{\alpha^{n'}}{\sqrt{n'!}} \langle n|n'\rangle\right)}##

##\displaystyle{= \left(\exp (-|\alpha|^{2}/2) \sum\limits_{n'=0}^{\infty} \frac{\alpha^{n'}}{\sqrt{n'!}} \delta_{nn'}\right)}##

##\displaystyle{= \left(\exp (-|\alpha|^{2}/2) \frac{\alpha^{n}}{\sqrt{n!}}\right)},##

which is a Poisson distribution with mean ##|\alpha|^{2}## and ##n## events in each interval so that

##\displaystyle{\langle\hat{n}\rangle \equiv \sum\limits_{n}n\ P(n)}##

##\displaystyle{= \sum\limits_{n}n \left(\exp (-|\alpha|^{2}/2) \frac{\alpha^{n}}{\sqrt{n!}}\right)\left(\exp(-|\alpha|^{2}/2)\frac{{\alpha^{*}}^{n}}{\sqrt{n!}}\right)}##

##\displaystyle{= \sum\limits_{n}n \exp (-|\alpha|^{2}) \frac{|\alpha|^{2n}}{n!}}##

is the mean squared of the Poisson distribution and is equal to ##|\alpha|^{2}##.

What do you think?
 
  • #13
It's looking a lot better. Unfortunately, I have to dash out now. I'll try to check it more carefully later.
 
Back
Top