Expectation Values of Radii in the Hydrogen Atom

Click For Summary
SUMMARY

The forum discussion focuses on calculating the expectation values of the radius \( r \) and the mean square error \( \Delta r \) for the hydrogen atom states 1s and 2p. The wave functions used are \( \psi_{1s}(r,\theta,\phi) = \frac{1}{\sqrt{\pi}}(Z/a_0)^{3/2} e^{-Zr/a_0} \) and \( \psi_{2p_0}(r,\theta,\phi) = \frac{1}{4\sqrt{2\pi}}(Z/a_0)^{3/2} \frac{Zr}{a_0} e^{-Zr/2a_0} \cos(\theta) \). The calculations yield \( _{1s} = \frac{3}{2}a_0 \) and \( _{2p} = 5a_0 \), with corresponding mean square errors \( \Delta r_{1s} = 3a_0^2 - \frac{3}{2}a_0 \) and \( \Delta r_{2p} = 30a_0^2 - 5a_0 \).

PREREQUISITES
  • Understanding of quantum mechanics and wave functions
  • Familiarity with the hydrogen atom model
  • Knowledge of integration techniques in spherical coordinates
  • Basic concepts of expectation values and statistical errors
NEXT STEPS
  • Study the derivation of wave functions for hydrogen-like atoms
  • Learn about spherical harmonics and their role in quantum mechanics
  • Explore the concept of degeneracy in quantum states
  • Investigate the implications of mean square errors in quantum measurements
USEFUL FOR

Students and researchers in quantum mechanics, physicists working with atomic models, and anyone interested in the mathematical foundations of quantum theory.

Lunar_Lander
Messages
33
Reaction score
0

Homework Statement



Determine for the hydrogen atom states 1s and 2p the expectation value of the radius r and the associated mean square error Δr.

Homework Equations



Wave Functions for 1s and 2p from Demtroeder's Experimental Physics Volume 3 (it says "The normalized complete eigenfunctions of an electron in the Coulomb potential V(r)=-Z\cdot e^2/(4\pi\epsilon_0r)", is this what we need?) :

\psi_{1s}(r,\theta,\phi)=\frac{1}{\sqrt{\pi}}(Z/a_0)^{3/2}\cdot e^{-Zr/a_0}
\psi_{2p_0}(r,\theta,\phi)=\frac{1}{4\sqrt{2\pi}}(Z/a_0)^{3/2}\cdot\frac{Zr}{a_0}\cdot e^{-Zr/2a_0}\cos(\theta)

\Delta r=\sqrt{<(r-\overline{r})^2>}

The Attempt at a Solution


Well, as in the neighbour thread (https://www.physicsforums.com/showthread.php?t=562573), the expectation value for r seems to be <\psi|r|\psi>=\int_0^r\int_0^{\pi}\int_0^{2\pi} r\cdot\psi^2\cdot r^2\sin(\theta)~dr~d\theta~d\phi, which I would, being naive, simplify to <r>=\int_0^r\int_0^{\pi}\int_0^{2\pi} \cdot\psi^2\cdot r^3\sin(\theta)~dr~d\theta~d\phi. As we are in Hydrogen, Z should be 1.

Then I tried 1s. I get
\psi^2=\frac{Z^3\exp(-\frac{2rZ}{a_0})}{\pi\cdot a_0^3}=\frac{1}{a_0^3\pi}\exp(-\frac{2r}{a_0})
Phi Integration:
\int_0^r\int_0^{\pi} 2\pi \frac{1}{a_0^3\pi}\exp(-\frac{2r}{a_0}) \cdot r^3\sin(\theta)~dr~d\theta
Theta Integration:
\int_0^r 4\pi \frac{1}{a_0^3\pi}\exp(-\frac{2r}{a_0}) \cdot r^3~dr
\int_0^r \frac{4}{a_0^3}\exp(-\frac{2r}{a_0}) \cdot r^3~dr
r Integration:
\frac{4}{a_0^3} \int_0^r \exp(-\frac{2r}{a_0}) \cdot r^3~dr
<r>_{1s}=\frac{4}{a_0^3} 6a_0^4-a_0\cdot\exp(-r/a_0)(6a_0^3+6a_0^2 r+3a_0r^2+r^3)

Is this the right track?

PS: There is a third wave function for 2p, for m=+/-1: \psi_{2p_{\pm 1}}(r,\theta,\phi)=\frac{1}{8\sqrt{2\pi}}(Z/a_0)^{3/2}\cdot\frac{Zr}{a_0}\cdot e^{-Zr/2a_0}\sin(\theta)\cdot e^{\pm i\varphi}
So two more calculations to run?
 
Last edited:
Physics news on Phys.org
I also attempted a run at the 2p (for m=0) and it looks like this:

\psi_{2p_0}^2=\frac{1}{32\pi\cdot a_0^5}\cdot r^2Z^5\exp(-\frac{2Z\cdot r}{a_0})\cdot\cos^2(\theta)

<r>=\frac{1}{32\pi\cdot a_0^5}\int_0^r \int_0^{\pi} \int_0^{2\pi} r^2Z^5\exp(-\frac{2Z\cdot r}{a_0})\cdot\cos^2(\theta)\cdot r^2\sin(\theta)~dr~d\theta~d\phi

<r>=\frac{1}{32\pi\cdot a_0^5}\int_0^r \int_0^{\pi} \int_0^{2\pi} r^2Z^5\exp(-\frac{2Z\cdot r}{a_0})\cdot\cos^2(\theta)\cdot r^2\sin(\theta)~dr~d\theta~d\phi~|Z=1

=\frac{1}{16\cdot a_0^5}\int_0^r \int_0^{\pi} r^4\exp(-\frac{2r}{a_0})\cdot\cos^2(\theta)\cdot \sin(\theta)~dr~d\theta

=\frac{1}{24\cdot a_0^5}\int_0^r r^4\exp(-\frac{2r}{a_0})~dr

=\frac{1}{96}(3-\frac{\exp(-\frac{2r}{a_0})(3a_0^4+6a_0^3r+6a_0^2r^2+4a_0r^3+2r^4)}{a_0})
 
Last edited:
I think I got it now. First of all I learned that the 2p energy level is degenerate, thus m should have no influence on it and there is only one calculation to do for 2p.

Then I tried to calculate 1s:

\psi_{1s}=\frac{1}{\sqrt{\pi}}(\frac{Z}{a_0})^{3/2}\exp(-\frac{Zr}{a_0})

As we are discussing hydrogen, Z=1.

<r>=<\psi|r|\psi>=\int_0^{\infty}\int_0^{\pi}\int_0^{2\pi} r\psi^2 r^2 \sin(\theta)~dr~d\theta~d\varphi

=\int_0^{\infty}\int_0^{\pi}\int_0^{2\pi} \psi^2 r^3 \sin(\theta)~dr~d\theta~d\varphi

=\int_0^{\infty}\int_0^{\pi}\int_0^{2\pi} \frac{1}{\pi a_0^3}\exp(-\frac{2r}{a_0}) r^3 \sin(\theta)~dr~d\theta~d\varphi

=\int_0^{\infty}\int_0^{\pi} \frac{2}{a_0^3}\exp(-\frac{2r}{a_0}) r^3 <br /> \sin(\theta)~dr~d\theta

=\int_0^{\infty} \frac{4}{a_0^3}\exp(-\frac{2r}{a_0}) r^3 ~dr

&lt;r&gt;=\frac{3}{2}a_0

To get the mean squared error which is \Delta r=&lt;r^2&gt;-&lt;r&gt;, I did the calculation above with &lt;\psi|r^2|\psi&gt; and got as an result &lt;r^2&gt;=3a_0^2, so \Delta r_{1s}=3a_0^2-\frac{3}{2}a_0.

2p:
\psi_{2p}=\frac{1}{4\sqrt{2\pi}}(\frac{Z}{a_0})^{3/2}\frac{Zr}{a_0}\exp(-\frac{Zr}{2a_0})\cos(\theta)

&lt;r&gt;=&lt;\psi|r|\psi&gt;=\int_0^{\infty}\int_0^{\pi}\int_0^{2\pi} r\psi^2 r^2 \sin(\theta)~dr~d\theta~d\varphi

\int_0^{\infty}\int_0^{\pi}\int_0^{2\pi} \psi^2 r^3 \sin(\theta)~dr~d\theta~d\varphi

\int_0^{\infty}\int_0^{\pi}\int_0^{2\pi} \frac{1}{32\pi a_0^5} r^2\exp(-\frac{r}{a_0})\cos^2(\theta) r^3 \sin(\theta)~dr~d\theta~d\varphi

\int_0^{\infty}\int_0^{\pi}\int_0^{2\pi} \frac{1}{32\pi a_0^5} r^5\exp(-\frac{r}{a_0})\cos^2(\theta) \sin(\theta)~dr~d\theta~d\varphi

\int_0^{\infty}\int_0^{\pi} \frac{1}{16 a_0^5} r^5\exp(-\frac{r}{a_0})\cos^2(\theta) \sin(\theta)~dr~d\theta

\int_0^{\infty} \frac{1}{24 a_0^5} r^5\exp(-\frac{r}{a_0})~dr

&lt;r&gt;=5a_0

&lt;r^2&gt;=30a_0, \Delta r_{2p}=30a_0^2-5a_0

Please let me know if there are any comments.
 
Last edited:

Similar threads

Replies
6
Views
5K
Replies
7
Views
2K
Replies
29
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K