Lunar_Lander
- 33
- 0
Homework Statement
Determine for the hydrogen atom states 1s and 2p the expectation value of the radius r and the associated mean square error Δr.
Homework Equations
Wave Functions for 1s and 2p from Demtroeder's Experimental Physics Volume 3 (it says "The normalized complete eigenfunctions of an electron in the Coulomb potential V(r)=-Z\cdot e^2/(4\pi\epsilon_0r)", is this what we need?) :
\psi_{1s}(r,\theta,\phi)=\frac{1}{\sqrt{\pi}}(Z/a_0)^{3/2}\cdot e^{-Zr/a_0}
\psi_{2p_0}(r,\theta,\phi)=\frac{1}{4\sqrt{2\pi}}(Z/a_0)^{3/2}\cdot\frac{Zr}{a_0}\cdot e^{-Zr/2a_0}\cos(\theta)
\Delta r=\sqrt{<(r-\overline{r})^2>}
The Attempt at a Solution
Well, as in the neighbour thread (https://www.physicsforums.com/showthread.php?t=562573), the expectation value for r seems to be <\psi|r|\psi>=\int_0^r\int_0^{\pi}\int_0^{2\pi} r\cdot\psi^2\cdot r^2\sin(\theta)~dr~d\theta~d\phi, which I would, being naive, simplify to <r>=\int_0^r\int_0^{\pi}\int_0^{2\pi} \cdot\psi^2\cdot r^3\sin(\theta)~dr~d\theta~d\phi. As we are in Hydrogen, Z should be 1.
Then I tried 1s. I get
\psi^2=\frac{Z^3\exp(-\frac{2rZ}{a_0})}{\pi\cdot a_0^3}=\frac{1}{a_0^3\pi}\exp(-\frac{2r}{a_0})
Phi Integration:
\int_0^r\int_0^{\pi} 2\pi \frac{1}{a_0^3\pi}\exp(-\frac{2r}{a_0}) \cdot r^3\sin(\theta)~dr~d\theta
Theta Integration:
\int_0^r 4\pi \frac{1}{a_0^3\pi}\exp(-\frac{2r}{a_0}) \cdot r^3~dr
\int_0^r \frac{4}{a_0^3}\exp(-\frac{2r}{a_0}) \cdot r^3~dr
r Integration:
\frac{4}{a_0^3} \int_0^r \exp(-\frac{2r}{a_0}) \cdot r^3~dr
<r>_{1s}=\frac{4}{a_0^3} 6a_0^4-a_0\cdot\exp(-r/a_0)(6a_0^3+6a_0^2 r+3a_0r^2+r^3)
Is this the right track?
PS: There is a third wave function for 2p, for m=+/-1: \psi_{2p_{\pm 1}}(r,\theta,\phi)=\frac{1}{8\sqrt{2\pi}}(Z/a_0)^{3/2}\cdot\frac{Zr}{a_0}\cdot e^{-Zr/2a_0}\sin(\theta)\cdot e^{\pm i\varphi}
So two more calculations to run?
Last edited: