Expectation Values of Radii in the Hydrogen Atom

Lunar_Lander
Messages
33
Reaction score
0

Homework Statement



Determine for the hydrogen atom states 1s and 2p the expectation value of the radius r and the associated mean square error Δr.

Homework Equations



Wave Functions for 1s and 2p from Demtroeder's Experimental Physics Volume 3 (it says "The normalized complete eigenfunctions of an electron in the Coulomb potential V(r)=-Z\cdot e^2/(4\pi\epsilon_0r)", is this what we need?) :

\psi_{1s}(r,\theta,\phi)=\frac{1}{\sqrt{\pi}}(Z/a_0)^{3/2}\cdot e^{-Zr/a_0}
\psi_{2p_0}(r,\theta,\phi)=\frac{1}{4\sqrt{2\pi}}(Z/a_0)^{3/2}\cdot\frac{Zr}{a_0}\cdot e^{-Zr/2a_0}\cos(\theta)

\Delta r=\sqrt{<(r-\overline{r})^2>}

The Attempt at a Solution


Well, as in the neighbour thread (https://www.physicsforums.com/showthread.php?t=562573), the expectation value for r seems to be <\psi|r|\psi>=\int_0^r\int_0^{\pi}\int_0^{2\pi} r\cdot\psi^2\cdot r^2\sin(\theta)~dr~d\theta~d\phi, which I would, being naive, simplify to <r>=\int_0^r\int_0^{\pi}\int_0^{2\pi} \cdot\psi^2\cdot r^3\sin(\theta)~dr~d\theta~d\phi. As we are in Hydrogen, Z should be 1.

Then I tried 1s. I get
\psi^2=\frac{Z^3\exp(-\frac{2rZ}{a_0})}{\pi\cdot a_0^3}=\frac{1}{a_0^3\pi}\exp(-\frac{2r}{a_0})
Phi Integration:
\int_0^r\int_0^{\pi} 2\pi \frac{1}{a_0^3\pi}\exp(-\frac{2r}{a_0}) \cdot r^3\sin(\theta)~dr~d\theta
Theta Integration:
\int_0^r 4\pi \frac{1}{a_0^3\pi}\exp(-\frac{2r}{a_0}) \cdot r^3~dr
\int_0^r \frac{4}{a_0^3}\exp(-\frac{2r}{a_0}) \cdot r^3~dr
r Integration:
\frac{4}{a_0^3} \int_0^r \exp(-\frac{2r}{a_0}) \cdot r^3~dr
<r>_{1s}=\frac{4}{a_0^3} 6a_0^4-a_0\cdot\exp(-r/a_0)(6a_0^3+6a_0^2 r+3a_0r^2+r^3)

Is this the right track?

PS: There is a third wave function for 2p, for m=+/-1: \psi_{2p_{\pm 1}}(r,\theta,\phi)=\frac{1}{8\sqrt{2\pi}}(Z/a_0)^{3/2}\cdot\frac{Zr}{a_0}\cdot e^{-Zr/2a_0}\sin(\theta)\cdot e^{\pm i\varphi}
So two more calculations to run?
 
Last edited:
Physics news on Phys.org
I also attempted a run at the 2p (for m=0) and it looks like this:

\psi_{2p_0}^2=\frac{1}{32\pi\cdot a_0^5}\cdot r^2Z^5\exp(-\frac{2Z\cdot r}{a_0})\cdot\cos^2(\theta)

<r>=\frac{1}{32\pi\cdot a_0^5}\int_0^r \int_0^{\pi} \int_0^{2\pi} r^2Z^5\exp(-\frac{2Z\cdot r}{a_0})\cdot\cos^2(\theta)\cdot r^2\sin(\theta)~dr~d\theta~d\phi

<r>=\frac{1}{32\pi\cdot a_0^5}\int_0^r \int_0^{\pi} \int_0^{2\pi} r^2Z^5\exp(-\frac{2Z\cdot r}{a_0})\cdot\cos^2(\theta)\cdot r^2\sin(\theta)~dr~d\theta~d\phi~|Z=1

=\frac{1}{16\cdot a_0^5}\int_0^r \int_0^{\pi} r^4\exp(-\frac{2r}{a_0})\cdot\cos^2(\theta)\cdot \sin(\theta)~dr~d\theta

=\frac{1}{24\cdot a_0^5}\int_0^r r^4\exp(-\frac{2r}{a_0})~dr

=\frac{1}{96}(3-\frac{\exp(-\frac{2r}{a_0})(3a_0^4+6a_0^3r+6a_0^2r^2+4a_0r^3+2r^4)}{a_0})
 
Last edited:
I think I got it now. First of all I learned that the 2p energy level is degenerate, thus m should have no influence on it and there is only one calculation to do for 2p.

Then I tried to calculate 1s:

\psi_{1s}=\frac{1}{\sqrt{\pi}}(\frac{Z}{a_0})^{3/2}\exp(-\frac{Zr}{a_0})

As we are discussing hydrogen, Z=1.

<r>=<\psi|r|\psi>=\int_0^{\infty}\int_0^{\pi}\int_0^{2\pi} r\psi^2 r^2 \sin(\theta)~dr~d\theta~d\varphi

=\int_0^{\infty}\int_0^{\pi}\int_0^{2\pi} \psi^2 r^3 \sin(\theta)~dr~d\theta~d\varphi

=\int_0^{\infty}\int_0^{\pi}\int_0^{2\pi} \frac{1}{\pi a_0^3}\exp(-\frac{2r}{a_0}) r^3 \sin(\theta)~dr~d\theta~d\varphi

=\int_0^{\infty}\int_0^{\pi} \frac{2}{a_0^3}\exp(-\frac{2r}{a_0}) r^3 <br /> \sin(\theta)~dr~d\theta

=\int_0^{\infty} \frac{4}{a_0^3}\exp(-\frac{2r}{a_0}) r^3 ~dr

&lt;r&gt;=\frac{3}{2}a_0

To get the mean squared error which is \Delta r=&lt;r^2&gt;-&lt;r&gt;, I did the calculation above with &lt;\psi|r^2|\psi&gt; and got as an result &lt;r^2&gt;=3a_0^2, so \Delta r_{1s}=3a_0^2-\frac{3}{2}a_0.

2p:
\psi_{2p}=\frac{1}{4\sqrt{2\pi}}(\frac{Z}{a_0})^{3/2}\frac{Zr}{a_0}\exp(-\frac{Zr}{2a_0})\cos(\theta)

&lt;r&gt;=&lt;\psi|r|\psi&gt;=\int_0^{\infty}\int_0^{\pi}\int_0^{2\pi} r\psi^2 r^2 \sin(\theta)~dr~d\theta~d\varphi

\int_0^{\infty}\int_0^{\pi}\int_0^{2\pi} \psi^2 r^3 \sin(\theta)~dr~d\theta~d\varphi

\int_0^{\infty}\int_0^{\pi}\int_0^{2\pi} \frac{1}{32\pi a_0^5} r^2\exp(-\frac{r}{a_0})\cos^2(\theta) r^3 \sin(\theta)~dr~d\theta~d\varphi

\int_0^{\infty}\int_0^{\pi}\int_0^{2\pi} \frac{1}{32\pi a_0^5} r^5\exp(-\frac{r}{a_0})\cos^2(\theta) \sin(\theta)~dr~d\theta~d\varphi

\int_0^{\infty}\int_0^{\pi} \frac{1}{16 a_0^5} r^5\exp(-\frac{r}{a_0})\cos^2(\theta) \sin(\theta)~dr~d\theta

\int_0^{\infty} \frac{1}{24 a_0^5} r^5\exp(-\frac{r}{a_0})~dr

&lt;r&gt;=5a_0

&lt;r^2&gt;=30a_0, \Delta r_{2p}=30a_0^2-5a_0

Please let me know if there are any comments.
 
Last edited:
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top