Expectation Values of Spin Operators

Rahmuss
Messages
222
Reaction score
0
[SOLVED] Expectation Values of Spin Operators

Homework Statement


b) Find the expectation values of S_{x}, S_{y}, and S_{z}


Homework Equations


From part a)
X = A \begin{pmatrix}3i \\ 4 \end{pmatrix}

Which was found to be: A = \frac{1}{5}

S_{x} = \begin{pmatrix}0 & 1 \\ 1 & 0 \end{pmatrix}

S_{y} = \begin{pmatrix}0 & -i \\ i & 0 \end{pmatrix}

S_{z} = \begin{pmatrix}1 & 0 \\ 0 & -1 \end{pmatrix}

The Attempt at a Solution


I have it setup as:

\left\langle S_{x}\right\rangle = \int^{\infty}_{-\infty}X^{*}S_{x}X \Rightarrow

\int^{\infty}_{-\infty}X^{*} \frac{\hbar}{2} \begin{pmatrix}0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix}\frac{3i}{5} \\ \frac{4}{5} \end{pmatrix}\Rightarrow

\int^{\infty}_{-\infty}\frac{\hbar}{2}\begin{pmatrix}\frac{-3i}{5} \\ \frac{4}{5} \end{pmatrix} \frac{\hbar}{2} \begin{pmatrix}\frac{3i}{5} \\ \frac{4}{5} \end{pmatrix} \Rightarrow

\int^{\infty}_{-\infty}\frac{\hbar^{2}}{4}\left[\frac{-12i}{25} + \frac{12i}{25} \right] \Rightarrow 0

\left\langle S_{y}\right\rangle = \int^{\infty}_{-\infty}X^{*}S_{y}X \Rightarrow

\int^{\infty}_{-\infty}X^{*} \frac{\hbar}{2} \begin{pmatrix}0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix}\frac{3i}{5} \\ \frac{4}{5} \end{pmatrix}\Rightarrow

\int^{\infty}_{-\infty}\frac{\hbar}{2} \begin{pmatrix}\frac{-3i}{5} \\ \frac{4}{5} \end{pmatrix} \begin{pmatrix}\frac{4i}{5} \\ \frac{-3}{5} \end{pmatrix} \frac{\hbar}{2} \Rightarrow

\int^{\infty}_{-\infty}\frac{\hbar^{2}}{4}\left[\frac{12i}{25} - \frac{12i}{25} \right] \Rightarrow 0

\left\langle S_{z}\right\rangle = \int^{\infty}_{-\infty}X^{*}S_{z}X \Rightarrow

\int^{\infty}_{-\infty}X^{*} \frac{\hbar}{2} \begin{pmatrix}1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix}\frac{3i}{5} \\ \frac{4}{5} \end{pmatrix}\Rightarrow

\int^{\infty}_{-\infty}\frac{\hbar}{2} \begin{pmatrix}\frac{-3i}{5} \\ \frac{4}{5} \end{pmatrix} \begin{pmatrix}\frac{3i}{5} \\ \frac{-4}{5} \end{pmatrix} \frac{\hbar}{2} \Rightarrow

\int^{\infty}_{-\infty}\frac{\hbar^{2}}{4}\left[\frac{9}{25} - \frac{16}{25} \right] \Rightarrow \frac{-7\hbar^{2}}{100}

The first two seem like they're fine; but the last one doesn't seem right. Now if it was:

\int^{\infty}_{-\infty}\frac{\hbar^{2}}{4}\left[\frac{9}{25} + \frac{16}{25} \right] \Rightarrow \frac{\hbar^{2}}{4}

Then that would at least seem to be in the right direction. So what am I missing?
 
Physics news on Phys.org
Where do you get your second factor of \hbar /2 from? Also, you need to throw away the integrals and write the bra as a row vector (not a column vector).
 
Oh, you're right, it's just S_{x}, not S_{x}^{2}. Thanks. And I'll change the vectors (on my homework); but is the rest correct then?
 
Yes, but there are no integrals involved when you use matrices.
 


how is the wave function defined?
also don't confuse with matrices and integrals
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top