Expected Value, Expected Variance,covariance

prodicalboxer
Messages
1
Reaction score
0
Can someone help me with this problem?

The joint probability mass function of X and Y, p(i,j)=P{X=i,Y=j}, is given as follows
p(-1,-2)=1/9, p(-1,-1)=1/18, p(-1,0)=1/12, p(-1,1)=0,
p(0,-2)=1/12, p(0,-1)=1/9, p(0,0)=0, p(0,1)=1/8,
p(1,-2)=0, p(1,-1)=1/8, p(1,0)=1/4, p(1,1)=1/18,

a) Compute the E[X], Var(X), and Cov(X,Y)
b) Calculate P{X,Y=k} for k=-2,-1,0,1,2
c) Evaluate E[Y|X=k] for k=-1,0,1

here is what I attempted to do:
E[X]=E[X1] + E[X2]+....E[Xn]=np
Var(X)= E[X^2]-(E[X])^2
Cov=(X,Y)=E[(X-E[X])(Y-E[Y])]
=E[XY-YE[X]-XE[Y]+E[X]E[Y]]
=E[XY]-E[Y]E[X]-E[X]E[Y]+E[X]E[Y]
=E[XY]-E[X]E[Y]

E[X]=E[X|Y=-2]= 1/9(-1)+1/12(0)+0(1)=-1/9
E[X|Y=-1]=1/18(-1)+1/9(0)+1/8(1)=5/72
E[X|Y=0]=1/12(-1)+0(0)+1/4(1)=1/6
E[X|Y=1]=0(-1) + 1/8(0) +1/18(1)=1/18
E[X]=-1/9+5/72+1/6+1/18=13/72

now the variance Var(X)
(-1/9)^2+(5/72)^2+(1/6)^2+(1/18)^2=1/81+25/5184+1/36+1/324
=83/1728
Var=83/1728-169/5184=5/324

E[Y]= [Y|X=-1]=1/9(-2)+1/18(-1)+1/12(0)+0(1)=-5/18
[Y|X=0]=1/12(-2)+1/9(-1)+0(0)+1/8(1)=-11/72
[Y|X=1]=0(-2)+1/8(-1)+1/4(0)+1/18(1)=-5/72
E[Y]=-5/18 -11/72-5/72=-41/72

Cov=(83/1728x5/324)-(13/72x-41/72)=37/5000

Could you check part A ...I really need help with part b and c
 
Mathematics news on Phys.org
Your numerical answer is correct for for ##E\{X\}##, but if I were grading your homework, I might mark off a point for your notation.
$$E\{X|Y=-2\} = \frac {\sum_{X = -1}^1 X p(X, -2)}{\sum_{X = -1}^1 p(X, -2)}$$
so you shouldn't use the notation ##E\{X|Y=-2\}## to mean something else. What you can do is write
$$E\{X\} = {\sum_{X = -1}^1 \sum_{Y = -2}^2X p(X, Y)}$$
and that is what you ended up doing when you calculated the numerical result.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top