I've one objection against this comparison. The reason is that Wilson's viewpoint on the renormalization group is a groundbreaking achievement, showing that renormalization is necessary even if no infinities occur at all. It explains, why effective QFTs work, and as far as we know today, all QFTs, also Dyson-renormalizable ones are effective theories, which have their validity domain with respect to the energy-momentum scale involved. In other words it makes the mathematical techniques, developed to tame the infinities occurring in relativistic QFT (like QED or the Standard Model), physical in the sense that this taming is very natural from the point of view of the Wilsonian interpretation of the renormalization-group equations. Nowadays RG techniques are an entire industry used in very many areas of theoretical physics: Particle physics, nuclear physics, condensed-matter physics, statistical mechanics,...
Compared to this Bohmian mechanics is just a dead end, because it does not provide any new insight into quantum theory. The predictions of Bohmian mechanics are the same as those of non-relativistic quantum theory, and the extension to relativistic quantum field theory is, to my knowledge, not yet achieved at all. Also Bohm's "orbits" are not observed in nature. There is even an experiment by Scully et al which disproves orbits, predicted by Bohmian ideas, but that's for photons, and indeed for massless spin-1 particles the idea of orbits in position space do indeed make the least sense of all examples. So perhaps, this "disproof" is a bit unjust towards Bohmian mechanics, but I've never understood what the advantage of BM might be, except to provide some puzzling exercises for higher mathematics to find Bohm's orbits on top of the solutions of Schrödinger's wave equation.