Exploring Bessel Function Generating Function

maddogtheman
Messages
18
Reaction score
0

Homework Statement



The Bessel function generating function is
<br /> e^{\frac{t}{2}(z-\frac{1}{z})} = \sum_{n=-\infty}^\infty J_n(t)z^n<br />

Show
<br /> J_n(t) = \frac{1}{\pi} \int_0^\pi cos(tsin(\vartheta)-n\vartheta)d\vartheta<br />

Homework Equations





The Attempt at a Solution



So far I have been able to use an analytic function theorem to write

<br /> J_n(t)=\frac{1}{2\pi i} \oint e^{\frac{t}{2}(z-\frac{1}{z})}z^{-n-1}dz<br />
(we are required to use this)
But now I have no idea where to go from here.
 
Last edited:
Physics news on Phys.org


It looks to me like you want to insert a specific contour. Like z=exp(i*theta).
 


Thanks can't believe I missed it
 


Using Bessel generating function to derive a integral representation of Bessel function
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top