MHB Exploring Proposition 6.1.7 and its Proof in Bland's "Rings and Their Modules"

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Modules Proof
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Paul E. Bland's book, "Rings and Their Modules".

I am focused on Section 6.1 The Jacobson Radical ... ...

I need help with the proof of Proposition 6.1.7 ... Proposition 6.1.7 and its proof read as follows:View attachment 6396
View attachment 6397In the above text from Bland, in the proof of (1), we read the following: " ... ... we see that $$\text{ann}_r( R / \mathfrak{m} ) = \text{ann}_r(S)$$. But $$a \in \text{ann}_r( R / \mathfrak{m} )$$ implies that $$a + \mathfrak{m} = ( 1 + \mathfrak{m} ) a = 0$$ , so $$a \in \mathfrak{m}$$.

So, it follows that $$\bigcap_\mathscr{S} \text{ann}_r(S) \subseteq J(R)$$ ... ... "
Could someone please explain why it follows that $$\bigcap_\mathscr{S} \text{ann}_r(S) \subseteq J(R)$$ ... ... ? Hope someone can help ...

Peter
 
Physics news on Phys.org
Peter said:
I am reading Paul E. Bland's book, "Rings and Their Modules".

I am focused on Section 6.1 The Jacobson Radical ... ...

I need help with the proof of Proposition 6.1.7 ... Proposition 6.1.7 and its proof read as follows:
In the above text from Bland, in the proof of (1), we read the following: " ... ... we see that $$\text{ann}_r( R / \mathfrak{m} ) = \text{ann}_r(S)$$. But $$a \in \text{ann}_r( R / \mathfrak{m} )$$ implies that $$a + \mathfrak{m} = ( 1 + \mathfrak{m} ) a = 0$$ , so $$a \in \mathfrak{m}$$.

So, it follows that $$\bigcap_\mathscr{S} \text{ann}_r(S) \subseteq J(R)$$ ... ... "
Could someone please explain why it follows that $$\bigcap_\mathscr{S} \text{ann}_r(S) \subseteq J(R)$$ ... ... ? Hope someone can help ...

Peter

Just some thoughts ...

Since $$\text{ann}_r( R / \mathfrak{m} ) = \text{ann}_r(S)$$

we have $$a \in \text{ann}_r( R / \mathfrak{m} )$$ means $$a \in \text{ann}_r(S)$$ ...

thus $$a \in \bigcap_\mathscr{S} \text{ann}_r(S)$$ ... ...

But ... we also have that $$a \in \text{ann}_r( R / \mathfrak{m} )$$ implies that $$a \in \mathfrak{m}$$ ... ...

But this means that $$a \in J(R)$$ ...

Thus $$a \in \bigcap_\mathscr{S} \text{ann}_r(S) \Longrightarrow a \in J(R)$$ ... ...

So $$\bigcap_\mathscr{S} \text{ann}_r(S) \subseteq J(R)$$ ...Is that correct?


Peter
 
Last edited:
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...