What is the limit of \(\cos^{x} \frac{\pi}{x}\) as \(x\) approaches infinity?

dextercioby
Science Advisor
Insights Author
Messages
13,395
Reaction score
4,064
of doing this

\lim_{x\rightarrow +\infty }\cos^{x}\frac{\pi}{x}

than using

\cos x \simeq 1- \frac{x^{2}}{2} \mbox {when "x" goes to zero}

?

Daniel.
 
Physics news on Phys.org
Hmm.. shouldn't it work to evaluate the limit of the expression's logarithm first?
Just an idea..
 
Ouch, that hurt :((

Daniel.
 
That would work, together with applying L'Hopital once.

\mathop {\lim }\limits_{x \to \infty } \left( {\cos \frac{\pi }{x}} \right)^x = \mathop {\lim }\limits_{x \to \infty } \exp \left( {x\ln \left( {\cos \frac{\pi }{x}} \right)} \right) = \exp \mathop {\lim }\limits_{x \to \infty } \left( {\frac{1}{{1/x}}\ln \left( {\cos \frac{\pi }{x}} \right)} \right) = \exp \mathop {\lim }\limits_{x \to \infty } \left( { - \pi \tan \frac{\pi }{x}} \right) = e^0 = 1

Edit: didn't see you already replied :smile:
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top