fauboca
- 157
- 0
z\in\mathbb{Z}
\frac{1}{1-(-z)}=\sum_{n=0}^{\infty}(-z)^n
\frac{1}{(z+2)^2}=\frac{d}{dz} \frac{-1}{1-(1-z)} = \frac{d}{dz} (1 + (1-z) + (1-z)^2+\cdots = 0 -1 -2(1-z)-3(1-z)^2 - \cdots = \sum_{n=0}^{\infty} ?
Not to sure about the second one.
\frac{1}{1-(-z)}=\sum_{n=0}^{\infty}(-z)^n
\frac{1}{(z+2)^2}=\frac{d}{dz} \frac{-1}{1-(1-z)} = \frac{d}{dz} (1 + (1-z) + (1-z)^2+\cdots = 0 -1 -2(1-z)-3(1-z)^2 - \cdots = \sum_{n=0}^{\infty} ?
Not to sure about the second one.
Last edited: