Expressing difference product using Vandermonde determinant.

Adgorn
Messages
133
Reaction score
19

Homework Statement


Show that ##g=g(x_1,x_2,...,x_n)=(-1)^{n}V_{n-1}(x)## where ##g(x_i)=\prod_{i<j} (x_i-x_j)##, ##x=x_n## and ##V_{n-1}## is the Vandermonde determinant defined by
##V_{n-1}(x)=\begin{vmatrix}
1 & 1 & ... & 1 & 1 \\
x_1 & x_2 & ... & x_{n-1} & x_n \\
{x_1}^2 & {x_2}^2 & ... & {x_{n-1}}^2 & {x_n}^2 \\
... & ... & ... & ... & ... \\
{x_1}^{n-1} & {x_2}^{n-1} & ... & {x_{n-1}}^{n-1} & {x_n}^{n-1}

\end{vmatrix}##

Homework Equations


N\A

The Attempt at a Solution


After expressing the determinant using the sigma notation I attempted to take a common factor to express it in a similar fashion but to no success. Other than that I really don't know how to approach this (I know I shouldn't say this but it is the case) as I never encountered a proof of this kind, and so I would appreciate some help.
 
Physics news on Phys.org
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top