Beez
- 32
- 0
Hi, I encountered the great difficulty solving the following question.
(The reason why its is hard is because I have to express the velocity as a function of the distance of the object has traveled in stead of as a function of the time elapsed.)
Starting from rest at t=0, an 8 lb. object is pulled along a surface with a force that is equal to twice the distance (in feet) of the object from its starting point x=0. The coefficient of sliding friction is 1/4.
The air resistance is numerically equal to one-eight the square of the velocity (in feet/second).
What is the velocity formula of the object as a function of the distance of the object has traveled?
So, weight = 8lb.
m=\frac{8}{32}=\frac{1}{4}
Air Resistance = \frac{1}{8}v^2
Friction = \frac{-1}{4}8 = -2
Pulling force = 2x
First I tried to write the velocity formula as a function of the time elapsed. The I got
\frac{1}{4}\frac{dv}{dt}=2x - 2-\frac{1}{8}v^2
2\frac{dv}{dt}=16x - 16-v^2
\frac{dv}{v^2+16}=(-8x)dt
Integrate, I had
-0.004363tan^-^1(0.25v)=8xt+C
Applying the I.C., v(0)=0
c = 0
so, tan^-^1(0.25v)=\frac{-8xt}{0.004363}
I don't know how to solve this equation for v from here.
Besides, the answer provided for this problem was v=\sqrt{16x-32+32e^-^x}
which gives me the idea that my approach is off and should be a way to obtain the desired formula without obtaining the formula as a function of time elapsed first...
What is the best way to attack this problem?
(The reason why its is hard is because I have to express the velocity as a function of the distance of the object has traveled in stead of as a function of the time elapsed.)
Starting from rest at t=0, an 8 lb. object is pulled along a surface with a force that is equal to twice the distance (in feet) of the object from its starting point x=0. The coefficient of sliding friction is 1/4.
The air resistance is numerically equal to one-eight the square of the velocity (in feet/second).
What is the velocity formula of the object as a function of the distance of the object has traveled?
So, weight = 8lb.
m=\frac{8}{32}=\frac{1}{4}
Air Resistance = \frac{1}{8}v^2
Friction = \frac{-1}{4}8 = -2
Pulling force = 2x
First I tried to write the velocity formula as a function of the time elapsed. The I got
\frac{1}{4}\frac{dv}{dt}=2x - 2-\frac{1}{8}v^2
2\frac{dv}{dt}=16x - 16-v^2
\frac{dv}{v^2+16}=(-8x)dt
Integrate, I had
-0.004363tan^-^1(0.25v)=8xt+C
Applying the I.C., v(0)=0
c = 0
so, tan^-^1(0.25v)=\frac{-8xt}{0.004363}
I don't know how to solve this equation for v from here.
Besides, the answer provided for this problem was v=\sqrt{16x-32+32e^-^x}
which gives me the idea that my approach is off and should be a way to obtain the desired formula without obtaining the formula as a function of time elapsed first...
What is the best way to attack this problem?