(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Find extreme values for

[tex]f(x, y, z)=x+y+z[/tex]

subject to:

[tex]x^4+y^4+z^4=c>0[/tex]

Therefore, since c>0, exclude the origin.

Let [tex]L(x, y, z, \lambda{)}=x+y+z+\lambda{(}x^4+y^4+z^4-c)[/tex]

and thus

[tex]L_1(x, y, z, \lambda{)}=1+4x^3\lambda[/tex]

[tex]L_2(x, y, z, \lambda{)}=1+4y^3\lambda[/tex]

[tex]L_3(x, y, z, \lambda{)}=1+4z^3\lambda[/tex]

[tex]L_4(x, y, z, \lambda{)}=x^4+y^4+z^4-c[/tex]

with solutions

[tex]x=y=z=(-1/4\lambda{)}^{1/3}[/tex]

and

[tex]0=((-1/4\lambda{)}^{1/3})^4+((-1/4\lambda{)}^{1/3})^4+((-1/4\lambda{)}^{1/3})^4-c=3((-1/4\lambda{)}^{1/3})^4-c[/tex]

[tex]c=-1/(4c^{3/4})[/tex]

and since c>0, the question has no solutions.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Extremizing multivariable functions

**Physics Forums | Science Articles, Homework Help, Discussion**