F(x)=sinx with taylor's theorem

  • Thread starter Thread starter tomboi03
  • Start date Start date
  • Tags Tags
    Theorem
tomboi03
Messages
74
Reaction score
0
i. Expand f(x)= x^5+x^3+x in powers of (x-1), using Taylor's theorem
ii. Consider f(x)= sin x. Find the Taylor polynomial T of degree 7 expanded at \pi\/3.
Give an estimate for the remainder term, in the form
|sin (x)- T(x)|\leq C|x-\pi/3|^8
with a suitable (good) constant C.

f(x)= f(1)+f'(1)(x-1)+f''(1)(x-1)^2... + f^(n)(1)/n!(x-1)^(n)
is that right for i?
and for ii... I'm not sure what to do.
 
Physics news on Phys.org
For i, it is technically correct, but you are given the function. So work out the derivatives!

For ii, start by writing down the Taylor series, for n running up to 7.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top