I also have to prove that ##f## has neither a local maximum nor a local minimum at ##0##. Here I present my proof. Suppose ##f## has a local maxima at ##x=0##. Then we have some open interval ##(a,b)## containing ##x=0## such that ##f(x)\leqslant f(0)##, for all ##x \in (a,b)##. This implies ##f(x) \leqslant 0##, for all ##x \in (a,b)##. Now ##a<0<b##. By Archimedean Property, there exists ##n_1 \in \mathbb{N}## such that ##\frac 1 n_1 < \frac{\pi b}{2}##. But we have ##4n_1-3 \geqslant n_1 >0##, which implies that ##\frac{1}{4n_1-3} < \frac{\pi b}{2}##. Hence we have ##0< \frac{2}{\pi(4n_1-3)} < b##. So ##\frac{2}{\pi(4n_1-3)} \in (a,b)##. This leads us to ##f\left(\frac{2}{\pi(4n_1-3)}\right) \leqslant 0##. But ##\forall n_1 \in \mathbb{N}##, we have ## f\left(\frac{2}{\pi(4n_1-3)}\right) = \frac{16}{\pi^4(4n_1-3)^4} > 0##. So we reach a contradiction. Hence ##f## doesn't have a local maxima at ##x=0##. Now suppose that ##f## has a local minima at ##x=0##. Again, there exists an open interval ##(a,b)## containing ##x=0## such that ##f(0)\leqslant f(x)##, for all ##x \in (a,b)##. Since we have ##a<0<b##, we can come up with some ##n_2 \in \mathbb{N}##, due to Archimedean property, such that ##\frac 1 n_2 < \frac{\pi b}{2}##. But ##(4n_2-1) > n_2 > 0##, so we get ##\frac{1}{4n_2-1} < \frac{\pi b}{2}##. So ##0< \frac{2}{\pi(4n_2-1)} < b##. This means that ##\frac{2}{\pi(4n_2-1)} \in (a,b)##. Because of our assumption, this means that ##f\left(\frac{2}{\pi(4n_2-1)}\right) \geqslant 0##. But ##\forall n_2 \in \mathbb{N}##, we have that ##f\left(\frac{2}{\pi(4n_2-1)}\right) = \frac{-16}{\pi^4(4n_2-1)^4} < 0##. So again we reach a contradiction, which means that ##f## can not have a local minima at ##x=0##. I hope my proof is correct.