Mathematica Factor multiple terms in mathematica

AI Thread Summary
The discussion revolves around using Mathematica 7 to factor a complex equation involving variables x and y into a specific format. The original poster seeks assistance in collecting terms like x, y, xy, x^2y, and xy^2. Initial attempts using the Collect function were unsuccessful. Suggestions include ensuring proper formatting of terms, particularly spacing in products like "xy" to "x y," and addressing the structure of the input vectors. A proposed solution involves using the CoefficientList function after expanding the equation, which generates an array of coefficients for the powers of x and y, allowing for easy retrieval of specific coefficients using a defined function. This approach effectively organizes the equation into the desired format.
micrain
Messages
3
Reaction score
0
Hello, I have a long equation
2hhpsop.jpg
and using Mathematica 7 I want to factor out terms such as x,y,xy, x^2y,xy^2, etc. so that I'll have it in a form similar to
a + b*x + c*y + d*(xy) + e*(x^2y) + f*(xy^2) + ...
I've tried using the Collect by passing {1,x,y,xy,x^2y,x y^2,...} as the terms to be collected but haven't been successful, I'd appreciate any help!

Thanks!
 
Physics news on Phys.org
Do you have that equation in Input form so I can play with it?

Also, have you tried just Expand[%]?
 
Hepth said:
Do you have that equation in Input form so I can play with it?
Here you go:
{1, x, y, x^2, y^2, xy, x^3, x^2 y, xy^2,
y^3}.{{Subscript[q, 11], Subscript[q, 12], Subscript[q, 13],
Subscript[q, 14], Subscript[q, 15], Subscript[q, 16],
Subscript[q, 17], Subscript[q, 18], Subscript[q, 19],
Subscript[q, 110]},
{Subscript[q, 12], Subscript[q, 22], Subscript[q, 23],
Subscript[q, 24], Subscript[q, 25], Subscript[q, 26],
Subscript[q, 27], Subscript[q, 28], Subscript[q, 29],
Subscript[q, 210]},
{Subscript[q, 13], Subscript[q, 23], Subscript[q, 33],
Subscript[q, 34], Subscript[q, 35], Subscript[q, 36],
Subscript[q, 37], Subscript[q, 38], Subscript[q, 39],
Subscript[q, 310]},
{Subscript[q, 14], Subscript[q, 24], Subscript[q, 34],
Subscript[q, 44], Subscript[q, 45], Subscript[q, 46],
Subscript[q, 47], Subscript[q, 48], Subscript[q, 49],
Subscript[q, 410]},
{Subscript[q, 15], Subscript[q, 25], Subscript[q, 35],
Subscript[q, 45], Subscript[q, 55], Subscript[q, 56],
Subscript[q, 57], Subscript[q, 58], Subscript[q, 59],
Subscript[q, 510]},
{Subscript[q, 16], Subscript[q, 26], Subscript[q, 36],
Subscript[q, 46], Subscript[q, 56], Subscript[q, 66],
Subscript[q, 67], Subscript[q, 68], Subscript[q, 69],
Subscript[q, 610]},
{Subscript[q, 17], Subscript[q, 27], Subscript[q, 37],
Subscript[q, 47], Subscript[q, 57], Subscript[q, 67],
Subscript[q, 77], Subscript[q, 78], Subscript[q, 79],
Subscript[q, 710]},
{Subscript[q, 18], Subscript[q, 28], Subscript[q, 38],
Subscript[q, 48], Subscript[q, 58], Subscript[q, 68],
Subscript[q, 78], Subscript[q, 88], Subscript[q, 89],
Subscript[q, 810]},
{Subscript[q, 19], Subscript[q, 29], Subscript[q, 39],
Subscript[q, 49], Subscript[q, 59], Subscript[q, 69],
Subscript[q, 79], Subscript[q, 89], Subscript[q, 99],
Subscript[q, 910]},
{Subscript[q, 110], Subscript[q, 210], Subscript[q, 310],
Subscript[q, 410], Subscript[q, 510], Subscript[q, 610],
Subscript[q, 710], Subscript[q, 810], Subscript[q, 910],
Subscript[q,
1010]}} .{{1}, {x}, {y}, {x^2}, {y^2}, {xy}, {x^3}, {x^2 y},
{xy^2}, {y^3}}

Hepth said:
Also, have you tried just Expand[%]?
Unfortunately, I've tried it without success.

Thanks for the help!
 
Well, #1 your :
{1, x, y, x^2, y^2, xy, x^3, x^2 y, xy^2,
y^3}
the xy parts need to have spaces "xy"-> "x y" or xy is a new variable.

Also, the second vector, why do you have the double {{},{},{},..}

Third, how about :

Code:
f = {1, x, y, x^2, y^2, x y, x^3, x^2 y, x y^2, 
    y^3}.{{Subscript[q, 11], Subscript[q, 12], Subscript[q, 13], 
     Subscript[q, 14], Subscript[q, 15], Subscript[q, 16], 
     Subscript[q, 17], Subscript[q, 18], Subscript[q, 19], 
     Subscript[q, 110]}, {Subscript[q, 12], Subscript[q, 22], 
     Subscript[q, 23], Subscript[q, 24], Subscript[q, 25], 
     Subscript[q, 26], Subscript[q, 27], Subscript[q, 28], 
     Subscript[q, 29], Subscript[q, 210]}, {Subscript[q, 13], 
     Subscript[q, 23], Subscript[q, 33], Subscript[q, 34], 
     Subscript[q, 35], Subscript[q, 36], Subscript[q, 37], 
     Subscript[q, 38], Subscript[q, 39], 
     Subscript[q, 310]}, {Subscript[q, 14], Subscript[q, 24], 
     Subscript[q, 34], Subscript[q, 44], Subscript[q, 45], 
     Subscript[q, 46], Subscript[q, 47], Subscript[q, 48], 
     Subscript[q, 49], Subscript[q, 410]}, {Subscript[q, 15], 
     Subscript[q, 25], Subscript[q, 35], Subscript[q, 45], 
     Subscript[q, 55], Subscript[q, 56], Subscript[q, 57], 
     Subscript[q, 58], Subscript[q, 59], 
     Subscript[q, 510]}, {Subscript[q, 16], Subscript[q, 26], 
     Subscript[q, 36], Subscript[q, 46], Subscript[q, 56], 
     Subscript[q, 66], Subscript[q, 67], Subscript[q, 68], 
     Subscript[q, 69], Subscript[q, 610]}, {Subscript[q, 17], 
     Subscript[q, 27], Subscript[q, 37], Subscript[q, 47], 
     Subscript[q, 57], Subscript[q, 67], Subscript[q, 77], 
     Subscript[q, 78], Subscript[q, 79], 
     Subscript[q, 710]}, {Subscript[q, 18], Subscript[q, 28], 
     Subscript[q, 38], Subscript[q, 48], Subscript[q, 58], 
     Subscript[q, 68], Subscript[q, 78], Subscript[q, 88], 
     Subscript[q, 89], Subscript[q, 810]}, {Subscript[q, 19], 
     Subscript[q, 29], Subscript[q, 39], Subscript[q, 49], 
     Subscript[q, 59], Subscript[q, 69], Subscript[q, 79], 
     Subscript[q, 89], Subscript[q, 99], 
     Subscript[q, 910]}, {Subscript[q, 110], Subscript[q, 210], 
     Subscript[q, 310], Subscript[q, 410], Subscript[q, 510], 
     Subscript[q, 610], Subscript[q, 710], Subscript[q, 810], 
     Subscript[q, 910], Subscript[q, 1010]}}.{1, x, y, x^2, y^2, x y, 
    x^3, x^2 y, x y^2, y^3};
CoefficientList[Expand[f], {x, y}]
F[i_, j_] := CoefficientList[Expand[f], {x, y}][[i+1]][[j+1]];
F[1, 3]

So it makes an array of the coefficients of the powers of x and y. So F[1,3] would be whatever is in front of x y^3.
 
Thanks!
 

Similar threads

Replies
2
Views
3K
Replies
1
Views
2K
Replies
4
Views
3K
Replies
12
Views
2K
Replies
2
Views
2K
Replies
3
Views
2K
Back
Top