Factoring $27720$ into Co-Prime Factors

  • Context: MHB 
  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Factoring Factors
Click For Summary
SUMMARY

The discussion focuses on factoring the number $27720$ into co-prime factors. Participants agree that the number of ways to split $27720$ into two co-prime factors is represented by the equation $\dfrac{C_1^5 +C_2^5+C_3^5+C_4^5}{2}=15$. This indicates that the combinations of co-prime factors yield a total of 15 distinct pairs. The conclusion is supported by the contributions of users kaliprasad and mathbalarka, who provided clear explanations of the solution.

PREREQUISITES
  • Understanding of co-prime numbers
  • Familiarity with combinatorial mathematics
  • Basic knowledge of algebraic equations
  • Experience with factorization techniques
NEXT STEPS
  • Study the properties of co-prime numbers in number theory
  • Explore combinatorial methods for counting factor pairs
  • Learn about the application of algebraic equations in number theory
  • Investigate the factorization of other composite numbers
USEFUL FOR

Mathematicians, students of number theory, and anyone interested in advanced factorization techniques will benefit from this discussion.

juantheron
Messages
243
Reaction score
1
The number of ways in which the number $27720$ can be split into two factors which are co prime
 
Mathematics news on Phys.org
jacks said:
The number of ways in which the number $27720$ can be split into two factors which are co prime

we have $27720 = 2^3 * 3^2 *5 * 7 * 11$
the number of factors which are coprimes 2^5 = 32
so it can be factored is 16 out of which we should leave out 1 * 27720

so number of ways = 15
 
$$27720 = 2^3 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11$$

Note that multiple factors doesn't really play a part, as we have required the two parts to be coprime. Thus, it's essentially equivalent to write out the the number of ways the *square-free part of $27720$*, i.e., $n = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$ can be written as a product of two coprime factors.

But this in turn is equivalent to partition the set $\{2, 3, 5, 7, 11\}$ into two disjoint sets, as all of the factors of $n$ are relatively coprime.

Then that again is equivalent to partition $5$ in two nonzero parts, not necessarily ordered. Enumerating gives :

$$\begin{aligned}5 \;&= 4 + 1 = 1 + 4 \\ &= 2 + 3 = 3 + 2 \\ &= 3 + 1 + 1 = 1 + 3 + 1 = 3 + 1 + 1 \\ &= 1 + 2 + 2 = 2 + 1 + 2 = 2 + 2 + 1 \\ &= 2 + 1 + 1 + 1 = 1 + 2 + 1 + 1 = 1 + 1 + 2 + 1 = 1 + 1 + 1 + 2 \\ &= 1 + 1 + 1 + 1 + 1 \end{aligned}$$

Which is a total of $2 + 2 + 3 + 3 + 4 + 1 = 15$ partitions. Thus there are $15$ ways to express $27720$ as a product of two coprime numbers $\blacksquare$
 
Thanks kaliprasad,mathbalarka(For Nice explanation.)

My solution is same as kaliprasad.
 
jacks said:
the number of ways in which the number $27720$ can be split into two factors which are co prime

[sp]
$\dfrac{C_1^5 +C_2^5+C_3^5+C_4^5}{2}=15$
or :

$C_1^5 +C_2^5=15$
[/sp]
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
986
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K