3.141592654
- 85
- 0
Homework Statement
\int\frac{dx}{1+\sqrt[3]{x-2}}
The answer is given: =\frac{3}{2}(x-2)^\frac{2}{3}-3(x-2)^\frac{1}{3}+ln|1+(x-2)^\frac{1}{3}|+C
Homework Equations
The Attempt at a Solution
\int\frac{dx}{1+\sqrt[3]{x-2}}
u=\sqrt[3]{x-2}
u^3=x-2
3udu=dx
=3\int\frac{udu}{1+u}
w=1+u
w-1=u
dw=du
=3\int\frac{w-1dw}{w}
=3\int\frac{wdw}{w}-3\int\frac{dw}{w}
=3\int dw-3\int\frac{dw}{w}
=3w-3ln|w|+C
=3(1+u)-3ln|1+u|+C
=3(1+\sqrt[3]{x-2})-3ln|1+\sqrt[3]{x-2}|+C
=3+3(x-2)^\frac{1}{3}-3ln|1+(x-2)^\frac{1}{3}|+C