• Support PF! Buy your school textbooks, materials and every day products Here!

Falling Rain Drop (Variable Mass)

  • #1

Homework Statement


Suppose a rain drop with mass ##m_0\neq 0## is falling due to gravity with initial velocity ##v_0##, assume ##\frac{dm}{dt}=k=##constant. Solve the differential equation and determine the velocity as ##t\to\infty##

Homework Equations


##F=\frac{dp}{dt}=\dot{m}v+m\dot{v}##

The Attempt at a Solution



Since ##F=mg## the D.E. is ##\dot{m}v+m\dot{v}=mg##, substituting in ##\frac{dm}{dt}=k## we find ##kv+m\dot{v}=mg##, since the mass increases with time we have ##m=m_0+kt##. One method I've attempted is essentially using the integrating factor but since the LHS is already a product rule derivative I don't need to multiply it by anything so:

$$\frac{d}{dt}(mv)=mg \\
\int \frac{d}{dt}(mv)dt=\int mg dt=\int mg \frac{dt}{dm}dm=\frac{g}{k}\int_{m_0}^{m} m\, dm\\
v(m_0+kt)+C=\frac{g}{2k}((m_0+kt)^2-m_0^2)=\frac{g}{2k}(2m_0kt+k^2t^2)
$$

at ##t=0##, ##v=v_0\Rightarrow##, ##v_0(m_0+0)+C=0\Longrightarrow C=-v_0m_0##

therefore...

$$v(m_0+kt)-v_0m_0=gm_0t+\frac{gkt^2}{2}\\
v(m_0+kt)=m_0(v_0+gt)+\frac{gkt^2}{2} \\
v=\frac{m_0(v_0+gt)}{m_0+kt}+\frac{gkt^2}{2(m_0+kt)}
$$

Now I find this solution a bit odd since my professor said that it would become asymptotic but I think he's wrong about this? The first term will approach ##\frac{m_0g}{k}## but the second term clearly diverges as ##t\to\infty## and it doesn't make sense that an object would reach a terminal velocity without drag. I suppose you could say it asymptotically goes to infinity but it's increasing linearly...
 

Answers and Replies

  • #3
haruspex
Science Advisor
Homework Helper
Insights Author
Gold Member
32,721
5,029
my professor said that it would become asymptotic
By itself that means nothing. What is supposed to tend asymptotically to a constant, or to a certain function of what?
The link DrSteve posted shows the acceleration tends to a constant.
 
  • #4
By itself that means nothing. What is supposed to tend asymptotically to a constant, or to a certain function of what?
The link DrSteve posted shows the acceleration tends to a constant.
Okay I suppose I'm just too used to thinking of functions converging to a constant when that term is mentioned.
 
  • #5
ehild
Homework Helper
15,427
1,823
The velocity tends to a simple function as t tends to infinity. What is that simple function?
 
  • #6
The velocity tends to a simple function as t tends to infinity. What is that simple function?
I believe it's just ##v=\frac{m(t)g}{k}## from setting ##\dot{v}=0## in the D.E.

Simplifying my expression for ##v(t)## would give ##v(t)=\frac{m_0g}{k}+\frac{gt}{2}## though

Sorry for so many edits but just noticed that the first one becomes ##v=\frac{m_0g}{k}+gt## which is almost the same as the result from simplification.
 
  • #7
ehild
Homework Helper
15,427
1,823
I believe it's just ##v=\frac{m(t)g}{k}## from setting ##\dot{v}=0## in the D.E.

Simplifying my expression for ##v(t)## would give ##v(t)=\frac{m_0g}{k}+\frac{gt}{2}## though

Sorry for so many edits but just noticed that the first one becomes ##v=\frac{m_0g}{k}+gt## which is almost the same as the result from simplification.
You can not set ##\dot v = 0##. The acceleration does not tend to zero. At great t, v increases linearly with time with rate g/2 instead of g as it were for a constant-mass body.
 
  • #8
You can not set ##\dot v = 0##. The acceleration does not tend to zero. At great t, v increases linearly with time with rate g/2 instead of g as it were for a constant-mass body.
Whoops, I realize now it doesn't make much sense to set acceleration equal to 0 :)

Interestingly at large t, it appears v always increases by ##g/2## regardless of ##\alpha## for ##\frac{dm}{dt}=k^{\alpha}##
 
  • #9
ehild
Homework Helper
15,427
1,823
Whoops, I realize now it doesn't make much sense to set acceleration equal to 0 :)

Interestingly at large t, it appears v always increases by ##g/2## regardless of ##\alpha## for ##\frac{dm}{dt}=k^{\alpha}##
##k^{\alpha}## is just an other constant. Why do you mix alpha in? It was said that dm/dt=k.
 
  • #10
ehild
Homework Helper
15,427
1,823
It is interesting the acceleration at long time tends to g/2, regardless of k.
 

Related Threads on Falling Rain Drop (Variable Mass)

Replies
2
Views
3K
Replies
0
Views
1K
Replies
1
Views
3K
  • Last Post
Replies
9
Views
9K
  • Last Post
Replies
2
Views
10K
  • Last Post
Replies
6
Views
22K
  • Last Post
Replies
2
Views
3K
  • Last Post
Replies
1
Views
23K
  • Last Post
Replies
1
Views
3K
  • Last Post
Replies
13
Views
3K
Top