Do particles in a system at absolute zero still have kinetic energy?

azaharak
Messages
152
Reaction score
0
Is it weird that at absolute zero in a metal, electrons at the fermi level still move around at the fermi velocity.

Is the notion that everything stops at absolute zero incorrect?

Thank you
 
Physics news on Phys.org
Kinetic energy of free electron: E=p^2/2m in classical mechanics, and E=h^2/2m in quantum mechanics.
Under the classical theory at T=0 V=0 and accordingly E=0. But in quantum mechanics at T=0 electron in a crystal has « Fermi's energy »: E=h^2(3pi^2*n)^(2/3)/2m. As you can see it does not depend on temperature.
Is the notion that everything stops at absolute zero incorrect?
Yes.
I wish success.
 
absolute zero and ground state

Yes. The notion that everything comes to a stop is a classical notion and quantum effects will "violate" it. Here, you see the Pauli principle in action. Even without it (i.e. for a system of bosons, or for one isolated particle), you have quantum zero-point energy, ensuring that if you measure the momentum of a particle, there is a probability that it is nonzero even at zero temperature.

The only case where the particles are strictly motionless is for a system of bosons that do not interact, or a single particle, in an infinite geometry without any potentials.

Thus: At T=0, it is not true that particles are at rest. However, it is true that the system (as a whole) is in its ground state, the state of lowest possible energy. (This is by definition, more or less.) But the ground state will typically have a nonzero probability for a particle being in motion!
 


AM_Ru said:
Kinetic energy of free electron: E=p^2/2m in classical mechanics, and E=h^2/2m in quantum mechanics.
Under the classical theory at T=0 V=0 and accordingly E=0. But in quantum mechanics at T=0 electron in a crystal has « Fermi's energy »: E=h^2(3pi^2*n)^(2/3)/2m. As you can see it does not depend on temperature.

I have to disagree with all the "content" of that paragraph. 1) The analogy to the energy of the free particle is completely irrelevant at this point. 2) You give a zeroth-order formula for T=0 and impose that this formula is temperature independent. That's trivial and has no significance. To the contrary, the Fermi surface gets smeered out for T>0 because there is a probability distribution in energy.

EmpaDoc said:
Thus: At T=0, it is not true that particles are at rest. However, it is true that the system (as a whole) is in its ground state, the state of lowest possible energy. (This is by definition, more or less.) But the ground state will typically have a nonzero probability for a particle being in motion!

I completely agree with that.
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top