A Fermis golden rule and transition rates

  • A
  • Thread starter Thread starter mupsi
  • Start date Start date
  • Tags Tags
    Transition
Click For Summary
Fermi's golden rule is essential for calculating the mean lifetime of electrons in solids under perturbations, such as electron-phonon interactions, and requires weighting by distribution functions like Fermi functions to account for state occupancy. The discussion raises the question of why an additional probability for unoccupied states is necessary, given that the transition rate should already encompass the probability of finding an electron in a continuum of states. It is clarified that the transition probability is proportional to the density of final states, which can include degenerate states or a continuum of states. While the golden rule applies to single-particle transitions, many-particle systems necessitate the use of distribution functions for accurate calculations. Ultimately, the mathematical foundation for transitions remains consistent across one-particle and many-particle states, despite the differing treatment in practical applications.
mupsi
Messages
32
Reaction score
1
When calculating the mean lifetime of an electron in a solid under the influence of a perturbation (for example electron-phonon interaction) we often apply Fermi's golden rule but the rate always has to be weighted by appropriate distribution functions (for example fermi functions). These take into account wether a given state is occupied of unoccupied and hence a candidate for the transition. Why do we need an "additional" probability for an unoccupied state? I mean, in the context of the Hilbert space the transition of a many-particle state to another isn't different from transitions between one particle states fundamentally. Isn't the probability already contained in the transition rate? In other words: The golden rule states: Given that the electron was in the state A (probability p(A)=1) what is the probability to find it in a continuum of states close to B at a time t? The rate is the time derivative of that probability. Isn't it redundant then to introduce a probability (1-P(B))? I hope I expressed myself clearly.
 
Physics news on Phys.org
mupsi said:
Given that the electron was in the state A (probability p(A)=1) what is the probability to find it in a continuum of states close to B at a time t? The rate is the time derivative of that probability. Isn't it redundant then to introduce a probability (1-P(B))? I hope I expressed myself clearly.

well it looks very simple that now an electron has to transit between states A and B ... so the probability of the combined states A and B should be 1 . rather than probability of finding the electron in state A is to be 1.

The transition probability is proportional to the density of final states . It is reasonably common for the final state to be composed of several states with the same energy - such states are said to be "degenerate" states. In many cases there will be a continuum of final states, so that this density of final states is expressed as a function of energy.
i think one has to analyze the different terms appearing in the transition probability expression (as in the golden rule) which is a workable approximation.
 
If you'd calculate the transitions of one particle you would only use the golden rule. The probability to find the electron in the continuum with energy close to Ea would then be an integral of the rate -no distribution function needed. When you use many particle systems you have to use distribution functions additionally. But fundamentally, a transition from a particular one-particle state to another is not different from the transition of a many particle state to another. The underlying math is the same. But why are they treated as if they're different?
 
*integral over time
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
First, I need to check that I have the 3 notations correct for an inner product in finite vector spaces over a complex field; v* means: given the isomorphism V to V* then: (a) physicists and others: (u,v)=v*u ; linear in the second argument (b) some mathematicians: (u,v)=u*v; linear in the first argument. (c) bra-ket: <v|u>= (u,v) from (a), so v*u . <v|u> is linear in the second argument. If these are correct, then it would seem that <v|u> being linear in the second...